品質(zhì)檢測(cè)儀F-751是基于F-750基礎(chǔ)上進(jìn)行開(kāi)發(fā)的針對(duì)獼猴桃、芒果、牛油果和甜瓜的品質(zhì)快速無(wú)損評(píng)判的便攜式儀器。它準(zhǔn)確、無(wú)損快速測(cè)量果實(shí)的干物質(zhì)量或糖度,從而評(píng)價(jià)果實(shí)的成熟度。
NIR(近紅外測(cè)定)技術(shù)在成套設(shè)備中的應(yīng)用可為我們提供客觀量化的質(zhì)量標(biāo)準(zhǔn),已在生產(chǎn)中應(yīng)用多年。我們的便攜式設(shè)備把近紅外分析技術(shù)帶給田間種植者為作物收割前提供更好、更一致的成熟度的評(píng)估和測(cè)定。F-751已經(jīng)開(kāi)始在世界各地的大學(xué)、科研機(jī)構(gòu)和種植商使用。
主要功能:
1、精確的測(cè)量干物質(zhì)量或糖度(芒果、牛油果、獼猴桃和甜瓜)
2、快速測(cè)量(4~6秒)
3、非破壞測(cè)量
4、帶定位系統(tǒng),便于制作數(shù)據(jù)地圖
5、野外可視半透顯示屏
6、可更換/充電電池
7、SD卡數(shù)據(jù)存儲(chǔ)
8、無(wú)需創(chuàng)建模型
9、收獲前成熟度評(píng)估
10、采后品質(zhì)檢驗(yàn)
測(cè)量參數(shù):
測(cè)量原始數(shù)據(jù)、反射率、吸光度、一階導(dǎo)數(shù)、二階導(dǎo)數(shù)、計(jì)算糖度或干物質(zhì)并獲取GPS信息
應(yīng)用領(lǐng)域:
主要應(yīng)用于果實(shí)成熟度和甜度相關(guān)參數(shù)的無(wú)損評(píng)估,包括田間作物管理和收獲期評(píng)估、果實(shí)儲(chǔ)藏、果實(shí)催熟及果實(shí)零售的各個(gè)環(huán)節(jié)。
主要技術(shù)參數(shù):
1、光譜儀:濱松C11708MA
2、光譜范圍:640-1050 nm
3、光譜樣點(diǎn)大小: 2.3nm
4、光譜分辨率:20 nm(半峰全寬)
5、光源:鹵素鎢燈
6、鏡頭:鍍膜增益近紅外線鏡頭
7、快門:白色參考標(biāo)準(zhǔn)
8、顯示器:帶背光陽(yáng)光可見(jiàn)透反液晶屏
9、操作環(huán)境:0-50oC,0-90%(非結(jié)露)
10、數(shù)據(jù)連接:WiFi
11、記錄的數(shù)據(jù):原始數(shù)據(jù)、反射率、吸光度、一階導(dǎo)數(shù)、二階導(dǎo)數(shù)、GPS信息、日期和時(shí)間
12、測(cè)量:干物質(zhì)量&糖度(oBrix)
13、供電:可拆卸3400Ah鋰電池
14、續(xù)航時(shí)間:大于500次測(cè)量
15、數(shù)據(jù)存儲(chǔ):可拆卸32GB SD卡
16、外殼:粉末噴涂鋁合金型材
17、尺寸:18×12×4.5cm
18、重量:1.05 kg
選購(gòu)指南:
主機(jī)、操作手冊(cè)、葉夾 、箱子和相關(guān)配件
基本配置:
參考文獻(xiàn):
D. Valasiadis et al., Wide-characterization of high and low dry matter kiwifruit through spatiotemporal multi-omic approach. Postharvest Biology and Technology 209, 112727 (2024).
2. G. Nú?ez-Lillo et al., A First Omics Data Integration Approach in Hass Avocados to Evaluate Rootstock–Scion Interactions: From Aerial and Root Plant Growth to Fruit Development. Plants 13, 603 (2024).
3. A. Mumford, Z. Abrahamsson, I. Hale, Predicting Soluble Solids Concentration of ‘Geneva 3’ Kiwiberries Using Near Infrared Spectroscopy. HortTechnology 34, 172-180 (2024).
4. B. Giussani, G. Gorla, J. Riu, Analytical Chemistry Strategies in the Use of Miniaturised NIR Instruments: An Overview. Critical Reviews in Analytical Chemistry 54, 11-43 (2024).
5. A. Zeb et al., Towards sweetness classification of orange crs using short-wave NIR spectroscopy. Scientific Reports 13, 325 (2023).
6. Y. Yu, M. Yao, Is this pear sweeter than this apple? A universal SSC model for fruits with similar physicochemical properties. Biosystems Engineering 226, 116-131 (2023).
7. M. Wohlers, A. McGlone, E. Frank, G. Holmes, Augmenting NIR Spectra in deep regression to improve calibration. Chemometrics and Intelligent Laboratory Systems 240, 104924 (2023).
8. C. B. S. Tong, M. Gullickson, M. Rogers, E. Burkness, W. D. Hutchison, Detection of Spotted-winged Drosophila (Diptera: Drosophilidae) Infestations in Blueberry Fruits1. Journal of Entomological Science 58, 370-374 (2023).
9. V. S. Titeli, M. Michailidis, G. Tanou, A. Molassiotis, Physiological and Metabolic Traits Linked to Kiwifruit Quality. Horticulturae 9, 915 (2023).
10. A. Sharma et al., Chemometrics driven portable Vis-SWNIR spectrophotometer for non-destructive quality evaluation of raw tomatoes. Chemometrics and Intelligent Laboratory Systems 242, 105001 (2023).
11. A. Praiphui, K. V. Lopin, F. Kielar, Construction and evaluation of a low cost NIR-spectrometer for the determination of mango quality parameters. Journal of Food Measurement and Characterization 17, 4125-4139 (2023).
12. A. Praiphui, F. Kielar, Comparing the performance of miniaturized near-infrared spectrometers in the evaluation of mango quality. Journal of Food Measurement and Characterization 17, 5886-5902 (2023).
13. C. Lu, H. Xu, B. Lannard, X. Yang, Seasonal Changes in Amylose and Starch Compositions in ‘Ambrosia’ Apples Associated with Rootstocks and Orchard Climatic Conditions. Agronomy 13, 2923 (2023).
14. J. E. Larson, P. Perkins-Veazie, T. M. Kon, Apple Fruitlet Abscission Prediction. II. Characteristics of Fruitlets Predicted to Persist or Abscise by Reflectance Spectroscopy Models. HortScience 58, 1095-1103 (2023).
15. J. E. Larson, T. M. Kon, Apple Fruitlet Abscission Prediction. I. Development and Evaluation of Reflectance Spectroscopy Models. HortScience 58, 1085-1092 (2023).
16. L. Duckena et al., Non-Destructive Quality Evaluation of 80 Tomato Varieties Using Vis-NIR Spectroscopy. Foods 12, 1990 (2023).
17. B. M. Anthony, D. G. Sterle, I. S. Minas, Robust non-destructive individual cr models allow for accurate peach fruit quality and maturity assessment following customization in phenotypically similar crs. Postharvest Biology and Technology 195, 112148 (2023).
產(chǎn)地:美國(guó)Felix