手機訪問更快捷
更多流量 更易傳播
隨時掌握行業(yè)動態(tài)
網(wǎng)絡課堂 行業(yè)直播
寬禁帶半導體材料SiC和GaN 的研究現(xiàn)狀
代半導體材料一般是指硅(Si)元素和鍺(Ge)元素,其奠定了20 世紀電子工業(yè)的基礎。第二代半導體材料主要指化合物半導體材料,如砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(GaP)、砷化銦(InAs)、砷化鋁(AlAs)及其合金化合物等,其奠定了20 世紀信息光電產(chǎn)業(yè)的基礎。第三代寬禁帶半導體材料一般是指氮化鎵(GaN)、碳化硅(SiC)、氮化鋁(AlN)、金剛石等材料,其具有禁帶寬度大、抗輻射能力強、擊穿電場強度好、耐高溫等特點,可以克服傳統(tǒng)半導體的劣勢,能夠使設備在惡劣的條件下正常工作。因此,寬禁帶半導體的材料可以在微電子領域發(fā)揮重要的作用,具有廣闊的應用市場。
禁帶寬度是半導體的一個重要特性參數(shù),根據(jù)半導體材料的能帶結(jié)構(gòu)不同,可將半導體材料分成兩種類型:寬禁帶和窄禁帶。若半導體材料的帶隙寬度小于2.3eV,則稱為窄帶隙半導體,代表性材料有GaAs、Si、Ge 和InP ;若半導體材料的帶隙寬度大于或等于2.3eV,則稱為寬帶隙半導體,代表性材料有GaN、SiC、AlN 和氮化鋁鎵(AlGaN)等。半導體材料的禁帶寬度越大,意味著其電子躍遷到導帶所需的能量越大,從而材料能承受的溫度和電壓越高,即越不容易成為導體。
寬禁帶半導體材料非常適合于制作抗輻射、高頻、大功率和高密度集成的電子器件,其具有良好的抗輻射能力及化學穩(wěn)定性、較高的飽和電子漂移速度及導熱率、優(yōu)異的電性能等特點。近年來,迅速發(fā)展起來的以GaN、SiC 為代表的寬禁帶半導體材料是固態(tài)光源和電力電子、微波射頻器件的“核芯”,在半導體照明、新一代移動通信、智能電網(wǎng)、高速軌道交通、新能源汽車、消費類電子等領域具有廣闊的應用前景,可望成為支撐信息、能源、交通、國防等產(chǎn)業(yè)發(fā)展的重點新材料,進行寬禁帶半導體材料的相關技術研發(fā)正在成為半導體產(chǎn)業(yè)新的戰(zhàn)略高地。SiC 與GaN 是第三代寬禁帶半導體材料中發(fā)展比較成熟的材料,本文主要研究這兩類材料。
SiC材料及其制備工藝
SiC 具有*的物理和電學特性,其可以通過熱氧化工藝制備出SiO2,同時在氧化過程中使C 元素以氣體的形式釋放,制備出高質(zhì)量的SiO2,進而可利用SiC 制作性能優(yōu)良的金屬– 氧化物– 半導體(Metal-Oxide-Semiconductor,MOS)晶體管。
(一)SiC 材料結(jié)構(gòu)及特性
SiC 為Ⅳ主族中Si 元素和C 元素組成的化合物,C 原子和Si 原子以共價鍵的形式連接。SiC 的基本結(jié)構(gòu)單元是硅碳四面體,其相互連接形成各種緊密堆積的結(jié)構(gòu)。Si—C 雙原子層的堆積順序不同,導致SiC具有多種晶體結(jié)構(gòu)。其中,SiC 的同態(tài)多晶型主要有閃鋅礦(Zincblende)結(jié)構(gòu)、纖鋅礦(Wurtzite)結(jié)構(gòu)和菱形(Diamond)結(jié)構(gòu)。SiC 的纖鋅礦結(jié)構(gòu)為α-SiC,SiC 的立方閃鋅礦結(jié)構(gòu)為β-SiC,根據(jù)晶體堆疊的不同呈現(xiàn)出多型結(jié)構(gòu),其中β-SiC(3C-SiC)和α-SiC(2H-SiC、4H-SiC、6H-SiC、15R-SiC)比較具有代表性,對于不同的晶體結(jié)構(gòu),其禁帶寬度也有所差異,如圖1 所示。
圖1 SiC材料的常見多型結(jié)構(gòu)(a)SiC材料的晶體結(jié)構(gòu);(b)對應的禁帶寬度
在SiC 的各種晶體類型中,3C-SiC 鍵能zui低,晶格自由能zui高且易成核,但其處于亞穩(wěn)態(tài),具有較低的穩(wěn)定性及易發(fā)生固相轉(zhuǎn)移的特點。在接近平衡態(tài)的條件下,當退火溫度分別為1200℃和2000℃時,3C-SiC 會發(fā)生相變,部分轉(zhuǎn)變?yōu)?H-SiC 和4H-SiC,其中3 種晶型的鍵能大小順序為3C-SiC<6H-SiC< 4H-SiC,鍵能越小越不穩(wěn)定,在外界條件影響下越容易發(fā)生相變。所以,通過改變外界條件,3C-SiC 可以發(fā)生相轉(zhuǎn)變,變成其他晶型。目前,應用較多的是4H-SiC 材料,其禁帶寬度為3.2eV,是Si 禁帶寬度的3 倍左右,且熱導率高,故多用于高溫大功率的微電子器件領域。
(二)SiC 晶體的制備
圖2(a)為SiC 相圖,可以看出,在大氣氛圍中SiC 在2830℃下會分解為C 和含C 量為13% 的Si 熔液,因此無法從Si-C熔融體中進行晶體生長。在過去的30 年中,工業(yè)界已研發(fā)出采用升華的方式制備SiC 襯底的技術,使SiC 材料在低壓惰性環(huán)境中升華,Si、SiC2、Si2C 等分子沿溫度梯度遷移,并按照設計取向在單晶SiC 種子層上沉積而重新結(jié)晶成SiC 晶體,如圖2(b)所示。采用新的物理氣相傳輸(PVT)技術能夠?qū)⒕w制備溫度控制在1900~2400℃范圍內(nèi)。
圖2 SiC的相圖(a)和制備SiC的物理氣相傳輸(PVT)技術(b)
SiC 存在各種多型體(結(jié)晶多系),它們的物性值也各不相同。SiC 晶體中存在多種缺陷,這些缺陷會降低其自身的質(zhì)量。常見的晶體缺陷類型有微管、位錯、層錯、夾雜、多型共生等,如圖3 所示。晶體缺陷給SiC 器件的應用造成了很大的阻礙。在這些缺陷當中,微管缺陷帶來的后果zui嚴重,SiC 器件的工作區(qū)域中任一微管缺陷都可能會導致器件的失效。
圖3 常見的SiC晶體缺陷類型
雖然一些電子元器件能夠在不使用外延層的情況下直接在襯底材料上制備,但高品質(zhì)的SiC 器件仍然需要利用高品質(zhì)的外延材料制備有源區(qū)。因此,低缺陷的SiC 外延生長技術對SiC器件質(zhì)量有著重要的影響。隨著SiC 功率器件制造要求和耐壓等級的不斷提高,其外延材料不斷向低缺陷、厚外延方向發(fā)展。目前,批量生產(chǎn)SiC 外延材料的產(chǎn)業(yè)化公司有美國的CREE、Dow Corning,日本昭和電工(Showa Denko)等。
相關產(chǎn)品
免責聲明
客服熱線: 15267989561
加盟熱線: 15267989561
媒體合作: 0571-87759945
投訴熱線: 0571-87759942
下載儀表站APP
Ybzhan手機版
Ybzhan公眾號
Ybzhan小程序