您好, 歡迎來(lái)到儀表網(wǎng)! 登錄| 免費(fèi)注冊(cè)| 產(chǎn)品展廳| 收藏商鋪|
行業(yè)產(chǎn)品
13774244617
當(dāng)前位置:上海澤泉科技股份有限公司>>植物生理生態(tài)研究>> 蜂巢矩陣葉綠素?zé)晒獬上裣到y(tǒng)HEXAGON-IMAGING-PAM
AS-SpecFluoMC 多通道冠層 SIF 遙感觀測(cè)系統(tǒng)
AS-SpecFluoMA 多角度植被冠層葉綠素?zé)晒膺b感觀測(cè)系統(tǒng)
AS-SpecFluo植被冠層葉綠素?zé)晒膺b感觀測(cè)系統(tǒng)
樹木動(dòng)態(tài)記錄系統(tǒng)——DYNATIM
蜂巢矩陣葉綠素?zé)晒獬上裣到y(tǒng)
HEXAGON-IMAGING-PAM
葉綠素?zé)晒獬上裣到y(tǒng)的“六邊形戰(zhàn)士"
精度高,面積大,功能全,應(yīng)用廣,文獻(xiàn)多,數(shù)據(jù)可視化!
HEXAGON-IMAGING-PAM是德國(guó)WALZ公司新推出的大型蜂巢矩陣葉綠素?zé)晒獬上裣到y(tǒng)。它憑借高精度的脈沖振幅調(diào)制(PAM)技術(shù),可以對(duì)20×24cm的區(qū)域進(jìn)行成像。分辨率高達(dá)1.2 MP(1000 x 1200 px, 2x2 binning技術(shù),實(shí)際是2000×2400),像素尺寸3.45 x 3.45 µm。
超高分辨率的基礎(chǔ)是成像區(qū)域光場(chǎng)的均勻性,在設(shè)計(jì)過程中,光源陣列中LED的位置是經(jīng)過精心布局的,以保證測(cè)量區(qū)域內(nèi)無(wú)陰影,所有成像區(qū)域內(nèi)的樣品均勻照光,樣品間的差異可以盡收眼底。大功率LED面板的冷卻效果非常好,可以大限度的延長(zhǎng)LED的使用壽命。
增加遠(yuǎn)紅光(FR)LED 面板,可用于測(cè)量所研究樣品的Fo'值。
HEXAGON-IMAGING-PAM采用蜂巢矩陣式LED面板拼接技術(shù),單個(gè)六邊形蜂巢矩陣單元之間LED的不平橫可以獨(dú)立補(bǔ)償,初衷是為實(shí)現(xiàn)樣品區(qū)域的理想照明提供更優(yōu)的選擇。
盡管成像區(qū)域很大,但是它依然足夠靈活,可以測(cè)量各種類型的樣品,如盆栽植物,穴盤中培養(yǎng)的植物,培養(yǎng)皿上的植物或多孔板中的藻類懸浮液。
滑動(dòng)門設(shè)計(jì),集成安全關(guān)閉功能,開門狀態(tài)下,飽和脈沖的強(qiáng)度會(huì)被抑制以保護(hù)操作人員的眼睛。
主要功能
l 原位測(cè)量:活體植物葉綠素?zé)晒獬上瘢庇^顯示樣品光合作用光能利用差異,可導(dǎo)出彩色圖像。
l 成像功能:對(duì)Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、PS/50=ETR、Inh等參數(shù)進(jìn)行成像分析。測(cè)定調(diào)節(jié)性能量耗散Y(NPQ),反映植物光保護(hù)能力,測(cè)定非調(diào)節(jié)性能量耗散Y(NO),反映植物光損傷程度。
l 程序測(cè)量功能:可自動(dòng)程序測(cè)量熒光誘導(dǎo)曲線、快速光曲線和暗弛豫,也可手動(dòng)測(cè)量;在測(cè)量過程中能自動(dòng)分析所有熒光參數(shù)的變化趨勢(shì);可以預(yù)編程進(jìn)行自定義實(shí)驗(yàn)流程,如模擬波動(dòng)光。
l AOI功能:可在測(cè)量前或測(cè)量后任意選擇感興趣的區(qū)域(AOI),程序?qū)⒆詣?dòng)對(duì)選擇的AOI的數(shù)據(jù)進(jìn)行變化趨勢(shì)分析,并在報(bào)告文件中顯示相關(guān)AOI的數(shù)據(jù)。所有報(bào)告文件中顯示的數(shù)據(jù)都可導(dǎo)出到EXCEL文件中。
l 成像異質(zhì)性分析功能:對(duì)任意參數(shù)任意時(shí)間的成像,可在圖像上任意選取兩點(diǎn),軟件自動(dòng)對(duì)兩點(diǎn)間的數(shù)據(jù)進(jìn)行橫向異質(zhì)性分析,并可導(dǎo)出到EXCEL文件中。
l 成像數(shù)據(jù)范圍分析功能:對(duì)任意參數(shù)任意時(shí)間的成像,可分析任意兩個(gè)熒光數(shù)值之間有多少個(gè)像素點(diǎn),多少面積(cm2)。
l 突變株篩選功能:可跟據(jù)成像結(jié)果快速篩選光合、產(chǎn)氫/油、抗逆(抗鹽、抗旱、抗病等)等突變株。
l 微藻毒理研究功能:可同時(shí)測(cè)量4塊96孔板,即384個(gè)微藻樣品(對(duì)照和處理組)的光合活性,軟件自動(dòng)給出處理組樣品相對(duì)于對(duì)照組的光合抑制百分比。
應(yīng)用領(lǐng)域
l 光合作用研究:可以在相同的條件下同時(shí)對(duì)大量樣品進(jìn)行成像
l 植物病理學(xué):病斑部位(包括肉眼不可見時(shí))成像以及病斑擴(kuò)散的時(shí)空動(dòng)力學(xué)
l 植物脅迫生理學(xué):肉眼不可見生物/非生物脅迫損傷的早期檢測(cè)
l 遺傳育種:出苗后大規(guī)??焖俸Y選高光合/抗旱/抗熱/抗凍/抗病等植株
l 突變株篩選:快速篩選模式植物的光合突變株、抗逆突變株、產(chǎn)氫微藻突變株等
l 微藻毒理學(xué):不同毒物濃度多個(gè)重復(fù)的樣品一次測(cè)完,軟件自動(dòng)計(jì)算抑制比率
l 其它多種擴(kuò)展研究
成像參數(shù)
Fo, Fm, F, Ft, Fm', Fv/Fm, Y(II), qL, qP, qN, NPQ, Y(NPQ), Y(NO), PS/50=ETR,Inh.等
產(chǎn)地:德國(guó)WALZ
參考文獻(xiàn)
數(shù)據(jù)來(lái)源:光合作用文獻(xiàn)Endnote數(shù)據(jù)庫(kù),原始數(shù)據(jù)來(lái)源:Google Scholar。
注:HEXAGON-IMAGING-PAM為新產(chǎn)品,暫無(wú)文獻(xiàn)發(fā)表,研究成果可參考M-IMAGING-PAM發(fā)表文章。
Salguero-Linares, J., et al. (2022). "Robust transcriptional indicators of immune cell death revealed by spatio-temporal transcriptome analyses." Molecular Plant.
Sandoval-Ibá?ez, O., et al. (2022). "De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b6f complex in Arabidopsis." Nature communications 13(1): 4045.
Gao, Y., et al. (2022). "Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation." The Plant Cell.
Ma, L., et al. (2022). "SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato." The Plant Cell.
Szechynska-Hebda, M., et al. (2022). "Aboveground Plant-to-Plant Electrical Signaling Mediates Network Acquired Acclimation." Plant Cell.
Xing, J., et al. (2022). "The plastid-encoded protein Orf2971 is required for protein translocation and chloroplast quality control." The Plant Cell.
Dahro, B., et al. (2022). "Two AT-Hook proteins regulate A/NINV7 expression to modulate sucrose catabolism for cold tolerance in Poncirus trifoliata." New Phytologist n/a(n/a).
Ivanova, A., et al. (2022). "Mitochondrial activity and biogenesis during resurrection of Haberlea rhodopensis." New Phytologist n/a(n/a).
Li, L., et al. (2022). "Genomes shed light on the evolution of Begonia, a mega-diverse genus." New Phytologist n/a(n/a).
Moog, M. W., et al. (2022). "The epidermal bladder cell-free mutant of the salt tolerant quinoa challenges our understanding of halophyte crop salinity tolerance." New Phytologist n/a(n/a).
Zhang, Y., et al. (2022). "CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis." New Phytologist n/a(n/a).
Ashok, A., et al. (2022). "Food-chain length determines the level of phenanthrene bioaccumulation in corals." Environmental Pollution: 118789.
Cai, W., et al. (2022). "CaSWC4 regulates the immunity-thermotolerance tradeoff by recruiting CabZIP63/CaWRKY40 to target genes and activating chromatin in pepper." PLOS Genetics 18(2): e1010023.
Castro, P. H., et al. (2022). "SUMO E3 Ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis." Plant Physiology.
Che, L., et al. (2022). "Rubredoxin 1 Is Required for Formation of the Functional Photosystem II Core Complex in Arabidopsis thaliana." Frontiers in Plant Science 13.
Chen, Q., et al. (2022). "Strategies of carbon use and photosynthetic performance of the two seaweeds Gracilaria chouae and Gracilariopsis lemaneiformis under different conditions of the carbonate system." Algal Research 64: 102713.
Gao, S., et al. (2022). "The growth and photosynthetic responses of white LEDs with supplemental blue light in green onion (Allium fistulosum L.) unveiled by Illumina and single-molecule real-time (SMRT) RNA-sequencing." Environmental and Experimental Botany: 104835.
He, J., et al. (2022). "The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis." Plant Physiology.
Hsieh, W.-Y., et al. (2022). "THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis." The Plant Journal n/a(n/a).
Kareem, H. A., et al. (2022). "Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages." Environmental Pollution 303: 119069.
Li, J., et al. (2022). "Melatonin enhances the low-temperature combined low-light tolerance of pepper (Capsicum annuum L.) seedlings by regulating photosynthesis, carotenoid, and hormone metabolism." Environmental and Experimental Botany 199: 104868.
Li, T., et al. (2022). "Environmental nitrogen and phosphorus nutrient variability triggers intracellular resource reallocation in Gracilariopsis lemaneiformis (Rhodophyta)." Algal Research 66: 102778.
Lin, S., et al. (2022). "Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress." Frontiers in Plant Science 13.
Liu, K., et al. (2022). "Melatonin delays leaf senescence and improves cucumber yield by modulating chlorophyll degradation and photoinhibition of PSII and PSI." Environmental and Experimental Botany 200: 104915.
Liu, Y., et al. (2022). "Brassinosteroids promote starch synthesis and the implication in low-light stress tolerance in Solanum lycopersicum." Environmental and Experimental Botany 201: 104990.
Lu, S., et al. (2022). "VvERF17 mediates chlorophyll degradation by transcriptional activation of chlorophyll catabolic genes in grape berry skin." Environmental and Experimental Botany 193: 104678.
Lynch, T., et al. (2022). "ABI5 binding protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation." Plant Physiology.
Lynch, T., et al. (2022). "ABI5 interacting protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation." Plant Physiology.
Okereke, C. N., et al. (2022). "Impact of heat stress of varying severity on papaya (Carica papaya) leaves: major changes in stress volatile signatures, but surprisingly small enhancement of total emissions." Environmental and Experimental Botany: 104777.
Om, K., et al. (2022). "Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis." Plant Physiology.
Pan, X., et al. (2022). "Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S." BMC Plant Biology 22(1): 44.
Pandey, K., et al. (2022). "Coordinated regulation of photosynthesis and sugar metabolism in guar increases tolerance to drought." Environmental and Experimental Botany 194: 104701.
Roach, T., et al. (2022). "Acquisition of desiccation tolerance in Haematococcus pluvialis requires photosynthesis and coincides with lipid and astaxanthin accumulation." Algal Research 64: 102699.
Rotasperti, L., et al. (2022). "The barley mutant happy under the sun 1 (hus1): An additional contribution to pale green crops." Environmental and Experimental Botany 196: 104795.
Shindo, A., et al. (2022). "Interactive effects of temperature and irradiance including spectral light quality on the photosynthesis of a brown alga Saccharina japonica (Laminariales) from Hokkaido, Japan." Algal Research 66: 102777.
Sohail, H., et al. (2022). "Genome-wide identification of plasma-membrane intrinsic proteins in pumpkin and functional characterization of CmoPIP1-4 under salinity stress." Environmental and Experimental Botany: 104995.
Song, W., et al. (2022). "Functional characterization and comparison of lycopene epsilon-cyclase genes in Nicotiana tabacum." BMC Plant Biology 22(1): 252.
Szádeczky-Kardoss, I., et al. (2022). "Elongation factor TFIIS is essential for heat stress adaptation in plants." Nucleic Acids Research.
Trainin, T., et al. (2022). "Physiological characterization of the wild almond Prunus arabica stem photosynthetic capability." Frontiers in Plant Science 13.
Xue, S., et al. (2022). "Effects of enhanced UV-B radiation on photosynthetic performance and non-photochemical quenching process of intertidal red macroalgae Neoporphyra haitanensis." Environmental and Experimental Botany: 104888.
Yang, L., et al. (2022). "Salt interferences to metabolite accumulation, flavonoid biosynthesis and photosynthetic activity in Tetrastigma hemsleyanum." Environmental and Experimental Botany 194: 104765.
Yang, L., et al. (2022). "Physiological Mechanism of Exogenous 5-Aminolevulinic Acid Improved the Tolerance of Chinese Cabbage (Brassica pekinensis L.) to Cadmium Stress." Frontiers in Plant Science 13.
Zhang, J., et al. (2022). "Early evaluation of adjuvant effects on topramezone efficacy under different temperature conditions using chlorophyll fluorescence tests." Frontiers in Plant Science 13.
Zhou, X., et al. (2022). "Physiological mechanism of strigolactone enhancing tolerance to low light stress in cucumber seedlings." BMC Plant Biology 22(1): 30.
Zhu, S., et al. (2022). "Cold stress tolerance of the intertidal red alga Neoporphyra haitanensis." BMC Plant Biology 22(1): 114.
請(qǐng)輸入賬號(hào)
請(qǐng)輸入密碼
請(qǐng)輸驗(yàn)證碼
以上信息由企業(yè)自行提供,信息內(nèi)容的真實(shí)性、準(zhǔn)確性和合法性由相關(guān)企業(yè)負(fù)責(zé),儀表網(wǎng)對(duì)此不承擔(dān)任何保證責(zé)任。
溫馨提示:為規(guī)避購(gòu)買風(fēng)險(xiǎn),建議您在購(gòu)買產(chǎn)品前務(wù)必確認(rèn)供應(yīng)商資質(zhì)及產(chǎn)品質(zhì)量。