測(cè)試對(duì)象:鋯石、斜鋯石、磷灰石、獨(dú)居石、榍石、黑鎢礦、白鎢礦、鈦鈾礦、錫石、剛玉、橄欖石、輝石、石榴石、長(zhǎng)石、角閃石、云母、綠松石、磁鐵礦、黃鐵礦以及有孔蟲(chóng)、貝殼等碳酸鹽和磷酸鹽類等礦物質(zhì)
測(cè)試周期:提前2-4周預(yù)約,5-10個(gè)工作日可完成測(cè)試。黃鐵礦等特殊礦物集中機(jī)時(shí)測(cè)試,請(qǐng)?zhí)崆?個(gè)月預(yù)約,10-20個(gè)工作日可完成測(cè)試??商峁y(cè)試加急服務(wù)。
送樣要求:1、樣品長(zhǎng)度不超過(guò)5cm,寬度不超過(guò)3cm,厚度不超過(guò)0.8cm;2、需測(cè)試單礦物可以選擇24μm、32μm、44μm三種不同束斑;3、為保證單礦物不被打穿,片子不宜過(guò)薄,常規(guī)測(cè)試剝蝕深度在5-20μm之間。
完成標(biāo)準(zhǔn):儀器狀態(tài)良好,監(jiān)控標(biāo)樣測(cè)試值在國(guó)際推薦值誤差范圍內(nèi)。
方法描述:
16.1單礦物L(fēng)A-ICP-MS微區(qū)原位微量元素分析
單礦物微區(qū)原位微量元素含量在武漢上譜分析科技有限責(zé)任公司利用LA-ICP-MS完成,詳細(xì)的儀器參數(shù)和分析流程見(jiàn)Zong et al. (2017)。GeolasPro激光剝蝕系統(tǒng)由COMPexPro 102 ArF 193 nm和MicroLas光學(xué)系統(tǒng)組成,ICP-MS型號(hào)為Agilent 7700e。激光剝蝕過(guò)程中采用氦氣作載氣、氬氣為補(bǔ)償氣以調(diào)節(jié)靈敏度,二者在進(jìn)入ICP之前通過(guò)一個(gè)T型接頭混合,激光剝蝕系統(tǒng)配置有信號(hào)平滑裝置(Hu et al., 2015)。本次分析的激光束斑和頻率分別為××µm和××Hz。單礦物微量元素含量處理中采用玻璃標(biāo)準(zhǔn)物質(zhì)BHVO-2G,BCR-2G和BIR-1G進(jìn)行多外標(biāo)無(wú)內(nèi)標(biāo)校正(Liu et al., 2008)。每個(gè)時(shí)間分辨分析數(shù)據(jù)包括大約20-30 s空白信號(hào)和50 s樣品信號(hào)。對(duì)分析數(shù)據(jù)的離線處理(包括對(duì)樣品和空白信號(hào)的選擇、儀器靈敏度漂移校正以及元素含量計(jì)算)采用軟件ICPMSDataCal (Liu et al., 2008)完成。16.2 In-situ trace element analysis of minerals by LA-ICP-MS
Trace element analysis of minerals was conducted by LA-ICP-MS at the Wuhan SampleSolution Analytical Technology Co., Ltd., Wuhan, China. Detailed operating conditions for the laser ablation system and the ICP-MS instrument and data reduction are the same as description by Zong et al. (2017). Laser sampling was performed using a GeolasPro laser ablation system that consists of a COMPexPro 102 ArF excimer laser (wavelength of 193 nm and maximum energy of 200 mJ) and a MicroLas optical system. An Agilent 7700e ICP-MS instrument was used to acquire ion-signal intensities. Helium was applied as a carrier gas. Argon was used as the make-up gas and mixed with the carrier gas via a T-connector before entering the ICP. A “wire” signal smoothing device is included in this laser ablation system (Hu et al., 2015). The spot size and frequency of the laser were set to ××µm and ××Hz, respectively, in this study. Trace element compositions of minerals were calibrated against various reference materials (BHVO-2G, BCR-2G and BIR-1G) without using an internal standard (Liu et al., 2008). Each analysis incorporated a background acquisition of approximately 20-30 s followed by 50 s of data acquisition from the sample. An Excel-based software ICPMSDataCal was used to perform off-line selection and integration of background and analyzed signals, time-drift correction and quantitative calibration for trace element analysis (Liu et al., 2008).
References
Zong, K.Q., Klemd, R., Yuan, Y., He, Z.Y., Guo, J.L., Shi, X.L., Liu, Y.S., Hu, Z.C., Zhang, Z.M., 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290, 32–48.
Hu, Z.C., Zhang, W., Liu, Y.S., Gao, S., Li, M., Zong, K.Q., Chen, H.H., Hu, S.H., 2015. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2), 1152–1157.
Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G. and Chen, H.H., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43.