DRL26C 樹(shù)木生長(zhǎng)監(jiān)測(cè)儀用于監(jiān)測(cè)樹(shù)干的生長(zhǎng)微變化,使樹(shù)的生長(zhǎng)與水分關(guān)系的研究變得更容易和更準(zhǔn)確。傳感器為不銹鋼和防紫外線塑料制作,堅(jiān)固耐用,適合*監(jiān)測(cè),無(wú)須外接電池或太陽(yáng)能板,內(nèi)置鋰電池和數(shù)據(jù)采集器,可記錄50000個(gè)數(shù)據(jù),通過(guò)紅外數(shù)據(jù)輸出。儀器具有較高的分辨率,可精確測(cè)量1微米莖桿的微變化,為研究樹(shù)木在白天,夜晚等氣候條件差異下的生長(zhǎng)提供重要數(shù)據(jù)依據(jù)。
主要優(yōu)點(diǎn):
? 適用于直徑大于8cm的任何樹(shù)干;
? 傳統(tǒng)機(jī)械與電子技術(shù)相結(jié)合,測(cè)量更準(zhǔn)確;
? 精度較高,分辨率1微米;
? 無(wú)損安裝固定;
? 導(dǎo)出數(shù)據(jù)格式為TXT、Excel
技術(shù)參數(shù):
? 量程:64mm生長(zhǎng)量變化監(jiān)測(cè)
? 分辨率:0.001mm
? 誤差:量程2%
? 作用力:15-20N
? 工作溫度:-30-60℃
? 工作濕度:0-*
? 溫度傳感器精度:±2℃
? 重量:300g
? 數(shù)據(jù)容量:50000個(gè)數(shù)據(jù)(每小時(shí)記錄1次則可自動(dòng)記錄4年)
? 采樣間隔:10min-24hrs
? 電池壽命:1hr間隔5年;10mins間隔3年;待機(jī)5.5年
? 通訊方式:無(wú)線紅外傳輸
產(chǎn)地:捷克
參考文獻(xiàn):
1,F(xiàn)rouz J, Mudrák O, Reitschmiedová E, et al. Rough wave-like heaped overburden promotes establishment of woody vegetation while leveling promotes grasses during unassisted post mining site development[J]. Journal of environmental management, 2018, 205: 50-58.
2,Nalevanková P, Je?ík M, Sitková Z, et al. Drought and irrigation affect transpiration rate and morning tree water status of a mature E uropean beech (Fagus sylvatica L.) forest in C entral E urope[J]. Ecohydrology, 2018: e1958.
3,Butz P, Raffelsbauer V, Graefe S, et al. Tree responses to moisture fluctuations in a neotropical dry forest as potential climate change indicators[J]. Ecological Indicators, 2017, 83: 559-571.
4,Dzenis J, Krisans O, Katrevics J, et al. Intra-seasonal development of radial increment of Picea abies in Latvia[C]//Research for Rural Development. International Scientific Conference Proceedings (Latvia). Latvia University of Agriculture, 2017.
5,Máli? F. TRVALé PLOCHY–K?ú? PRE POCHOPENIE DOPADOV GLOBáLNYCH ZMIEN NA BIODIVERZITU[J]. Dlhodoby ekologicky vyskum a monitoring lesov, 2017: 77.
6,張歆陽(yáng). 氮添加對(duì)武夷山米櫧徑向生長(zhǎng)的影響[J]. 北京大學(xué)學(xué)報(bào) (自然科學(xué)版), 2017, 53(6): 1143-1149.
7,Trnka M, Fischer M, Barto?ová L, et al. Potential and limitations of local tree ring records in estimating a priori the growth performance of short-rotation coppice plantations[J]. Biomass and Bioenergy, 2016, 92: 12-19.
8,Je?ík M, Bla?enec M, Ku?era J, et al. The response of intra-annual stem circumference increase of young European beech provenances to 2012-2014 weather variability[J]. iForest-Biogeosciences and Forestry, 2016, 9(6): 960.
9,Vido J, St?elcová K, Nalevanková P, et al. Identifying the relationships of climate and physiological responses of a beech forest using the Standardised Precipitation Index: a case study for Slovakia[J]. Journal of Hydrology and Hydromechanics, 2016, 64(3): 246-251.
10,Dolezal J, Leheckova E, Sohar K, et al. Annual and intra-annual growth dynamics of Myricaria elegans shrubs in arid Himalaya[J]. Trees, 2016, 30(3): 761-773.
11,Mendivelso H A, Camarero J J, Gutiérrez E, et al. Climatic influences on leaf phenology, xylogenesis and radial stem changes at hourly to monthly scales in two tropical dry forests[J]. Agricultural and forest meteorology, 2016, 216: 20-36.
12,Dole?al J, Lehe?ková E, Sohar K, et al. Oak decline induced by mistletoe, competition and climate change: a case study from central Europe[J]. Preslia, 2016, 88: 323-346.
13,Je?ík M, Bla?enec M, Letts M G, et al. Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) Karst.) by monitoring stem circumference and sap flow[J]. Ecohydrology, 2015, 8(3): 378-386.
14,Bu?ková R, Acosta M, Da?enová E, et al. Environmental factors influencing the relationship between stem CO 2 efflux and sap flow[J]. Trees, 2015, 29(2): 333-343.