PlantPen葉夾式PRI&NDVI測(cè)量儀
PlantPen葉夾式PRI&NDVI測(cè)量儀是一種快速測(cè)量植物反射光譜指數(shù)的野外便攜式儀器。PlantPen的兩種標(biāo)準(zhǔn)版配置分別測(cè)量NDVI和PRI這兩種應(yīng)用廣泛的植被指數(shù)。用戶也可以定制其他參數(shù)。
PlantPen PRI 210:PRI (Photochemical Reflectance Index) 光化學(xué)反射指數(shù)是通過計(jì)算植物葉片對(duì)531nm和570nm兩個(gè)波長光反射而得到的參數(shù)。該參數(shù)對(duì)類胡蘿卜素極為敏感,反應(yīng)植物的光合作用中的光能利用效率和CO2同化速率,并可作為植物水脅迫的可靠指數(shù)。因此廣泛用于植物產(chǎn)量和脅迫研究。
PlantPen NDVI 310:NDVI (Normalized Difference Vegetation Index)歸一化植被指數(shù)是通過計(jì)算植物葉片對(duì)紅光和近紅外兩個(gè)波長光反射而得到的參數(shù),是反映植物葉綠素含量的一個(gè)重要參數(shù)。葉綠素會(huì)強(qiáng)烈吸收紅光用于光合作用,而葉片細(xì)胞結(jié)構(gòu)會(huì)強(qiáng)烈反射近紅外光。因此,NDVI與光合能力直接相關(guān),從而反映植物冠層的能量吸收狀況。
應(yīng)用領(lǐng)域
葉綠素含量快速檢測(cè)
植物光合研究
早期脅迫檢測(cè)
氮素利用效率研究
功能特點(diǎn)
攜帶方便、操作簡單。
直接無損測(cè)量得到NDVI和PRI值。
內(nèi)置藍(lán)牙與USB雙通訊模塊,內(nèi)置GPS模塊,輸出帶時(shí)間戳的地理位置
軟件可導(dǎo)出數(shù)據(jù)為Excel格式,具備實(shí)時(shí)控制和遙控功能。
可用于農(nóng)業(yè)、林業(yè)以及植物學(xué)中光合作用、逆境脅迫等的研究和教學(xué)。
技術(shù)參數(shù)
測(cè)量參數(shù):PlantPen PRI 210:光化學(xué)反射系數(shù)PRI = (R531 - R570)/(R531 + R570);PlantPen NDVI 310:歸一化植被指數(shù)NDVI = (RNIR – RRED) / (RNIR + RRED)
測(cè)量光:內(nèi)置雙波長光源,PlantPen PRI 210:531nm和570nm;PlantPen NDVI 310:635nm和760nm
檢測(cè)波長:PlantPen PRI 210:500 – 600 nm;PlantPen NDVI 310:620-750 nm
通訊:藍(lán)牙+USB雙通訊模式,藍(lán)牙在20m距離*傳輸速度3Mbps
GPS模塊:內(nèi)置,精度1.5m
存儲(chǔ):16Mb
數(shù)據(jù)存儲(chǔ):100,000個(gè)數(shù)據(jù)點(diǎn)以上
顯示:圖形顯示
鍵盤:密封防水設(shè)計(jì)2鍵
電源:2000mA可充電鋰電池,USB充電,連續(xù)工作70小時(shí),低電報(bào)警
自動(dòng)關(guān)機(jī):5分鐘無操作
尺寸:135×65×33 mm
重量:188g
操作環(huán)境:溫度: 0 ~ 55 oC; 相對(duì)濕度: 0 ~95 % (無冷凝)
存儲(chǔ)條件:溫度:-10 ~ 60 oC;相對(duì)濕度:0 ~ 95 % (無冷凝)
用戶定制
描述植物結(jié)構(gòu)和葉綠素含量的參數(shù)種類很多,應(yīng)用測(cè)量光波長各異,計(jì)算方法也各不相同。為了滿足不同客戶的需求,可以定制適合各種類似參數(shù)的掌上植物測(cè)量儀?;蛸徺IPolyPen RP410光譜儀測(cè)量植物全反射光譜。
應(yīng)用案例
西班牙巴斯克大學(xué)使用PlantPen PRI測(cè)量儀和FluorPen葉綠素?zé)晒鈨x研究高產(chǎn)大豆對(duì)干旱脅迫的生理和光合響應(yīng)(Buezo,2019)。
沈陽農(nóng)業(yè)大學(xué)使用PlantPen NDVI 和SpectroSense 2+植被指數(shù)測(cè)量儀分別測(cè)量水稻葉片和冠層的NDVI(Y Fenghua, 2016)
產(chǎn)地:捷克
參考文獻(xiàn)
1.Cortinhas, A., Caperta, A. D., Teixeira Ra, G., Carvalho, L., & Abreu, M. M. (2020). Harnessing sediments of coastal aquaculture ponds through technosols construction for halophyte c*tion using sing saline water irrigation. Journal of Environmental Management, 261, 109907.
2.Rossini-Oliva, S., Abreu, M. M., Sanantos, E. S., & Leidi, E. O. (2020). Soil–plant system and potential human health risk of Chinese cabbage and oregano growing in soils from Mn-and Fe-abandoned mines: microcosm assay. Environmental Geochemistry and Health.
3.Raminoarison M, et al. (2020). Multiple-nutrient limitation of upland rainfed rice in ferralsols: a greenhouse nutrient-omission trial. Journal of Plant Nutrition 43(2): 270-284
4.Jabran K, et al. (2020). Elevated CO2, temperature and nitrogen levels impact growth and development of invasive weeds in the Mediterranean region. Journal of the Science of Food and Agriculture.
5.Buezo J, et al. (2019). Drought tolerance response of high‐yielding soybean varieties to mild drought: physiological and photochemical adjustments. Physiologia Plantarum 166: 88–104
6.Chen S., Guo Y., Sirault X., et al. (2019). Nondestructive Phenomic Tools for the Prediction of Heat and Drought Tolerance at Anthesis in Brassica Species. Plant Phenomics, 16
7.Lv X., Zhang Y., Zhang Y., et al. (2019). Source-Sink Modifications Affect Leaf Senescence and Grain Mass in Wheat. bioRxiv 647743.
8.Paterson, I. D., Coetzee, J. A., Weyl, P., Griffith, T. C., Voogt, N., & Hill, M. P. (2019). Cryptic species of a water hyacinth biological control agent revealed in South Africa: host specificity, impact, and thermal tolerance. Entomologia Experimentalis et Applicata.
9.Ruiz De Larrinaga, L., Resco De Dios, V., Fabrikov, D., Guil-Guerrero, J. L., et al. (2019). Life after Harvest: Circadian Regulation in Photosynthetic Pigments of Rocket Leaves during Supermarket Storage Affects the Nutritional Quality. Nutrients, 11(7), 1519.
10.K Jabran, et al. 2018. High carbon dioxide concentration and elevated temperature impact the growth of weeds but do not change the efficacy of glyphosate. Pest Management Science 74(3): 766-771
11.K Trnková, et al. 2017. Desiccation‐induced changes in photochemical processes of photosynthesis and spectral reflectance in Nostoc commune (Cyanobacteria, Nostocales) colonies from polar regions. Phycological Research 65(1): 44-50