摘要:在傳統(tǒng)的太陽能路燈系統(tǒng)中,通常經(jīng)過防電流倒灌二極管將太陽能板與蓄電池直接相連,這將導(dǎo)致太陽能板的利用效率低,同時容易使蓄電池長期處于欠充滿狀態(tài),造成其使用壽命的縮減。本文在研究太陽電池電路模型的基礎(chǔ)上,提出了一種數(shù)?;旌系膠ui大功率點(diǎn)追蹤(Maxim Power Point Tracking,簡稱MPPT)策略,它可zui大程度地利用
太陽能,同時對固態(tài)光源LED的驅(qū)動電路做了研究,zui后用實(shí)驗(yàn)驗(yàn)證了該方案的性和實(shí)用性。
1、引言
隨著固態(tài)光源的發(fā)展,LED的應(yīng)用已不再僅僅局限于指示燈領(lǐng)域,它憑借壽命長,光效高等優(yōu)點(diǎn)在現(xiàn)代照明體系中日益凸現(xiàn)*性。伴隨著光伏技術(shù)的發(fā)展,大功率高亮度LED更以其、節(jié)能而進(jìn)一步引起了社會各界對該光源的廣泛關(guān)注。但目前,LED太陽能路燈還存在因燈驅(qū)動電路導(dǎo)致LED光衰現(xiàn)象及太陽能利用率不高等不足。業(yè)界普遍認(rèn)為LED的恒流驅(qū)動對抑制光衰效果顯著。
傳統(tǒng)的太陽能路燈充電系統(tǒng)中,通常經(jīng)過防電流倒灌二極管將太陽能板與蓄電池直接相連,這將導(dǎo)致太陽能板的工作點(diǎn)偏移zui大功率點(diǎn)(Maxim Power Point,簡稱MPP),而未有效利用太陽能板的可輸出功率;同時容易使蓄電池因供能不足而長期處于欠充滿狀態(tài),造成壽命縮減。本文在研究太陽電池電路模型的基礎(chǔ)上,分析了恒壓追蹤[1]、擾動觀察[2,3]等zui大功率追蹤(MPP Tracking,即MPPT)法,提出了一種數(shù)?;旌系腗PPT策略,它可使太陽電池的輸出穩(wěn)定在MPP附近,從而有效利用了太陽能板可輸出的zui大功率。
2、太陽電池的電路模型
圖1示出太陽電池的電路模型。通常,材料內(nèi)部的等效并聯(lián)電阻Rsh值大,而材料內(nèi)部的等效串聯(lián)電阻Rs值很小。
圖1太陽電池的電路模型
圖中Is---由光生伏應(yīng)產(chǎn)生的電流
輸出負(fù)載RL上的電壓電流關(guān)系為:
式中q,k---電子電荷量及波耳茲曼常數(shù)
A---太陽能板的理想因素,A=1~5
T---太陽能板的溫度
Ios---太陽能板的逆向飽和電流,與T有關(guān)
由上述關(guān)于太陽能板電路模型的分析可見,太陽電池的輸出是一個隨光照條件及溫度等因素變化的復(fù)雜變量。圖2示出太陽電池在標(biāo)準(zhǔn)測試條件下,即光照1kW/m2,T=25℃時的典型輸出特性。
圖2太陽能板的典型輸出特性曲線
太陽能板的輸出開路電壓uoc和輸出短路電流isc的值由生產(chǎn)廠給出。
3、電路工作原理
目前,市場上絕大部分太陽能路燈都是通過防電流倒灌二極管將蓄電池與太陽能板直接相連以充電的。圖3示出傳統(tǒng)的充電電路。
圖3傳統(tǒng)的充電電路
這種做法的弊端是它將使太陽能板的輸出電壓Uarr被蓄電池箝位在其電動勢12V左右,也即其工作點(diǎn)被限制在圖2的Q點(diǎn),這將使太陽能板的輸出功率Parr大幅度降低。
在太陽能板與蓄電池組中加入DC/DC電路,通過對其進(jìn)行控制,調(diào)節(jié)Uarr,從而使其穩(wěn)定在圖2的P點(diǎn),以便能有效利用太陽能板的可輸出功率。在標(biāo)準(zhǔn)測試條件下,太陽電池的*工作電壓與其開路電壓之間存在一個特定的比例關(guān)系,基于該思想產(chǎn)生了恒壓跟蹤MPPT策略,但在非標(biāo)準(zhǔn)條件下,其實(shí)用性較差。利用擾動開關(guān)管的工作占空比D,直至輸出功率Parr達(dá)到zui大的擾動觀察法,在尋找MPP上更具通用性。
對于Buck電路,存在UarrD=Ubat關(guān)系,所以:
式中Ubat---蓄電池電壓
式(1)代入得:
由圖2可知,在MPP時,dParr/dUarr=0,(d2Parr/dUarr2)《0,因此可由式(3)和式(4)化簡為:
因此,輸出功率和D的關(guān)系與圖2中的P和U關(guān)系相似。從而可通過擾動D,實(shí)現(xiàn)輸出功率的變化,并尋找出MPP.由于輸出電壓即蓄電池的充電電壓短期內(nèi)變化不大,在進(jìn)行D擾動尋找MPP期間可近似認(rèn)為恒定,因此輸出功率的大小直接反應(yīng)在輸出電流即蓄電池的充電電流上,通過采樣該充電電流值,從而判斷出輸出功率隨D擾動的變化情況,以便進(jìn)行MPPT.為了提高控制精度和驅(qū)動能力,單片機(jī)與開關(guān)管間加入了D/A轉(zhuǎn)換和PWM芯片,圖4示出其主電路拓?fù)洹?br />
4、zui大功率點(diǎn)追蹤(MPPT)
電路尋找MPP的工作原理可簡述為:通過不斷改變開關(guān)管驅(qū)動信號的D,直至蓄電池的充電電流達(dá)到zui大,此刻即可認(rèn)為太陽電池的輸出功率達(dá)到zui大,實(shí)現(xiàn)太陽電池的zui大功率點(diǎn)追蹤。在尋找MPP過程中,根據(jù)D的擾動情況,輸出功率有3類模式,對應(yīng)9種大小關(guān)系。
圖5示出輸出功率隨D擾動的變化情況
根據(jù)上述模式變化,擾動開關(guān)管的D,當(dāng)檢測到當(dāng)前輸出功率與D的大小關(guān)系為模式2時,即可認(rèn)為已搜尋到MPP,同時將以該D進(jìn)行工作。
考慮到溫度及光照條件的改變,太陽電池的輸出參數(shù)不斷變化,同時導(dǎo)致MPP的漂移,單片機(jī)在經(jīng)過設(shè)定時間后,將再一次做D的擾動,搜尋新的MPP,以保證太陽電池的zui大功率輸出,從而有效利用太陽能。
根據(jù)上述分析,編制了相關(guān)程序。圖6示出其設(shè)計流程。
圖6軟件設(shè)計流程圖
通過實(shí)驗(yàn)發(fā)現(xiàn),在晴日里不同時刻的MPP處,電路工作的D均變化不大。因此,為了避免搜尋過程中造成尋找時間太久及帶來的能量浪費(fèi),下一時刻進(jìn)行MPP追蹤的搜尋起點(diǎn)設(shè)定為上一次MPP時的D值。
5、MPPT策略實(shí)驗(yàn)結(jié)果
主電路的工作頻率為100kHz,當(dāng)搜尋到輸出電流達(dá)到zui大時,即認(rèn)為該點(diǎn)為電路工作的MPP,圖7示出此刻的驅(qū)動信號Ugs實(shí)驗(yàn)波形??梢?,此時開關(guān)管的D≈0.65,這與理論分析結(jié)果很吻合。表1給出由上述分析得到的傳統(tǒng)電路與MPPT電路的對比性試驗(yàn)結(jié)果。
圖7輸出zui大功率時的ugs波形
表1傳統(tǒng)充電電路與MPPT充電電路的實(shí)驗(yàn)結(jié)果
由表1可見,傳統(tǒng)太陽能充電電路中,15W的Parrzui大值出現(xiàn)在早上溫度不高、光照比較強(qiáng)的時刻,但此時的利用率僅僅約為68.4%;而采用帶有MPPT功能的DC變換電路后,輸出功率明顯上升。
6、結(jié)論
LED燈的恒流驅(qū)動,對抑止光衰現(xiàn)象起到了很有效的作用;通過數(shù)?;旌偷姆椒?,避免了單純數(shù)字控制所帶來的控制精度不高等問題,且單片機(jī)的智能控制,使得能夠較快的尋找到zui大功率點(diǎn),提高了太陽能板的利用率及整個路燈照明系統(tǒng)的性能價格比。