北京澤平科技有限責(zé)任公司
參 考 價 | 面議 |
產(chǎn)品型號
品 牌
廠商性質(zhì)代理商
所 在 地北京市
聯(lián)系方式:北京澤平查看聯(lián)系方式
更新時間:2022-07-21 15:26:06瀏覽次數(shù):175次
聯(lián)系我時,請告知來自 儀表網(wǎng)產(chǎn)品介紹:鑒于人肝細(xì)胞原代培養(yǎng)在藥物代謝、毒性、副作用的研究中被視為核心檢驗標(biāo)準(zhǔn)
鑒于人肝細(xì)胞原代培養(yǎng)在藥物代謝、毒性、副作用的研究中被視為核心檢驗標(biāo)準(zhǔn),而原代培養(yǎng)的肝細(xì)胞經(jīng)常面臨諸如解毒基因表達(dá)量下調(diào)的問題(如膜轉(zhuǎn)運蛋白、結(jié)合酶、細(xì)胞色素P45),在Vinci B等人的肝細(xì)胞研究中(Vinci B, et al. Modular bioreactor for primary human hepatocyte culture: medium flow stimulates expression and activity of detoxification genes. Biotechnol J. 2011; 6: 554-64),認(rèn)為正是傳統(tǒng)靜置培養(yǎng)無法模擬的某些生理刺激,引發(fā)了基因表達(dá)的下調(diào)。而Vinci B通過Quasi Vivo流動培養(yǎng)人原代肝臟細(xì)胞后,不論基因表達(dá)量、酶活還是生物參數(shù),均證明流動培養(yǎng)可特異性地上調(diào)多種解毒酶基因的表達(dá),而且流動培養(yǎng)的人貼壁肝細(xì)胞,其解毒酶基因家族的表達(dá)水平接近或高于新鮮分離的肝臟細(xì)胞。
實驗流程
1、將原代肝細(xì)胞進(jìn)行靜態(tài)培養(yǎng),在第七天分組,一組保持靜態(tài)培養(yǎng),一組改為Quasi Vivo流動培養(yǎng),繼續(xù)培養(yǎng)至二十一天,進(jìn)行檢測。
2、分別進(jìn)行流動培養(yǎng)、靜態(tài)培養(yǎng)、標(biāo)準(zhǔn)培養(yǎng)十四天后的肝臟細(xì)胞(FT297),形態(tài)無差異
3、流動培養(yǎng)下的肝細(xì)胞CYP1A1、CYP1A2、CYP2B6、CYP3A4、GSTa等解毒酶基因表達(dá)更高,到達(dá)峰值時長有差異。
4、多種解毒基因上調(diào),CYP1A1等基因表達(dá)甚至高于新鮮分離的肝臟細(xì)胞(FIH)
5、流動培養(yǎng)提高了肝臟細(xì)胞CYP3A4、UGT2B4/7、CYP2C9的活性,化合物代謝速率顯著提高。
文章小結(jié):
1、人原代肝臟細(xì)胞分別進(jìn)行7-21天的流動培養(yǎng)、靜態(tài)培養(yǎng);
2、檢測肝臟細(xì)胞32個基因的表達(dá)量、酶活和生物參數(shù);
3、使用流動培養(yǎng)可提高人貼壁肝臟細(xì)胞解毒基因表達(dá):
①UGT(尿苷二磷酸葡萄糖醛酸轉(zhuǎn)移酶)基因家族表達(dá)上調(diào):UGT1A1/UGT2B4/UGT2B7;
②多藥耐藥相關(guān)蛋白1 (MDR1)和MRP2基因的mRNA的表達(dá)上調(diào);
③外源物質(zhì)/藥物代謝和運輸基因表達(dá)上調(diào),并激活某些酶活性:CYP1A1/1A2/2B6/2C9/3A4;
④GST(S-轉(zhuǎn)移酶)基因表達(dá)上調(diào)。
用于(貼壁)細(xì)胞培養(yǎng)的Quasi Vivo流動培養(yǎng)系統(tǒng),利用培養(yǎng)基循環(huán)流動,模擬血流剪切應(yīng)力環(huán)境,更貼近人肝臟細(xì)胞的體內(nèi)環(huán)境,能促進(jìn)原代肝臟細(xì)胞增殖、貼壁肝細(xì)胞的基因表達(dá)等。作為英國Kirkstall公司核心產(chǎn)品,Quasi Vivo流動培養(yǎng)系統(tǒng)創(chuàng)新地模擬了體內(nèi)動態(tài)環(huán)境,并可同時結(jié)合3D培養(yǎng)構(gòu)建細(xì)胞模型。流動培養(yǎng)系統(tǒng)主要由高精度蠕動泵(用于培養(yǎng)基循環(huán)流動)、特殊設(shè)計的培養(yǎng)腔室(低通量培養(yǎng)用、中-高通量培養(yǎng)用)耗材組成。Quasi Viv設(shè)備可自行拼裝,操作方便,按產(chǎn)品說明書清洗和滅菌后,所有耗材可長期、重復(fù)使用,大大降低了Quasi Vivo的使用成本。
目前,Quasi Vivo流動培養(yǎng)系統(tǒng)已在超過70個專業(yè)研究機構(gòu)獲得應(yīng)用,已成功構(gòu)建包括呼吸系統(tǒng)(肺成纖維細(xì)胞、支氣管上皮細(xì)胞等)、肝臟、腎臟、心血管、腦組織、糖尿病等研究模型(原代細(xì)胞模型)。
Quasi Vivo參考文獻(xiàn)
1.Tommaso S. et al., 2011. Engineering Quasi-Vivo in vitro organ models. Advances in Experimental Medicine and Biology Volume: 745, pp 138-153.
2.Patricia M. et al., 2018. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing. Scientific Reports Volume: 8, Issue: 1, pp 8784.
3.Basma E. et al. 2020. A dynamic perfusion based blood-brain barrier model for cytotoxicity testing and drug permeation. Scientific Reports Volume: 10, Issue: 1, pp 3788.
4.Miranda A. et al., 2016. A three dimensional (3D) human in vitro blood-brain barrier (BBB). Heart Volume: 102.
5.Buesch S. et al., 2018. A Novel In Vitro Liver Cell Culture Flow System Allowing Long-Term Metabolism and Hepatotoxicity Studies. Applied In Vitro Toxicology Volume: 4, Issue: 3, pp 232-237.
6.Alec O. et al., 2019. Development of an in vitro media perfusion model of Leishmania major macrophage infection. 2019 PLOS ONE Volume: 14, Issue: 7.
7.Sean M. et al., 2017. In-silico Characterisation of the Kirkstall QV900 In-Vitro System for Advanced Cell Culture. 5th International Conference on Computational and Mathematical Biomedical Engineering pp 1174-1177.
8.Ahluwalia A. et al., 2011. Hepatotoxicity of diclofenac in a Quasi-Vivo™ multicompartment bioreactor. oxicology Letters Volume: 205.
9.Tomlinson, L. et al., 2019. In vitro liver zonation of primary rat hepatocytes.Front. Bioeng. Biotechnol., 7(17).
10.Elbakary, B. and Badhan R. K. S, 2020. A dynamic perfusion based blood brain barrier model for cytotoxicity testing and drug permeation. Scientific Reports, 10(1),3788.
11.O’Keefe, A. et al., 2019. Development of an in vitro media perfusion model of Leishmania major macrophage infection. Plos One, 14(7).
12.Miranda-Azpiazu, P. et al., 2018. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases. Scientific Reports, 8, 8784.
13.Chandorkar, P. et al., 2017. Fast-track development of an in vitro 3D lung/immune cell model to study Aspergillus infections. Scientific Reports, 7, 11644.
14.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4).
15.Mattei, G., Giusti, S. & Ahluwalia, A., 2014. Design Criteria for Generating Physiologically Relevant In Vitro Models in Bioreactors. Processes, 2(3).
16.Mazzei, D. et al., 2010. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnology and Bioengineering, 106.
17.Nithiananthan, S. et al., 2016. Physiological Fluid Flow Moderates Fibroblast Responses to TGF-β1. Journal of Cellular Biochemistry, 13.
18.Ramachandran, S.D. et al., 2015. In vitro generation of functional liver organoid-like structures using adult human cells. PLoS ONE, 10(10).
19.Rashidi, H. et al., 2016. Fluid shear stress modulation of hepatocyte like cell function. Archives of Toxicology, 90, 7.
20.Vinci, B. et al., 2012. An in vitro model of glucose and lipid metabolism in a multicompartmental bioreactor. Biotechnology Journal, 7.
21.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4), pp.1–9.
22.Mattei, G., Giusti, S. & Ahluwalia, A., 2014. Design Criteria for Generating Physiologically Relevant In Vitro Models in Bioreactors. Processes, 2, pp.548–569.
23.Mazzei, D. et al., 2010. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnology and Bioengineering, 106, pp.127–137.
24.Nithiananthan, S. et al., 2016. Physiological Fluid Flow Moderates Fibroblast Responses to TGF-β1. Journal of cellular biochemistry, 13(October), pp.1–13. Available at:
25.Ramachandran, S.D. et al., 2015. In vitro generation of functional liver organoid-like structures using adult human cells. PLoS ONE, 10(10), pp.1–14.
26.Rashidi, H. et al., 2016. Fluid shear stress modulation of hepatocytelike cell function. Archives of Toxicology, pp.3–7.
27.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4).
28.Vinci, B. et al., 2011. Modular bioreactor for primary human hepatocyte culture: Medium flow stimulates expression and activity of detoxification genes. Biotechnology Journal, 6, pp.554–564.
29.Tommaso S. et al., 2011. Engineering Quasi-Vivo in vitro organ models. Advances in Experimental Medicine and Biology Volume: 745, pp 138-153.
30.Ahluwalia A. et al., 2011. Hepatotoxicity of diclofenac in a Quasi-Vivo™ multicompartment bioreactor. oxicology Letters Volume: 205.
您感興趣的產(chǎn)品PRODUCTS YOU ARE INTERESTED IN
賽洛捷克SCILOGEX Levo ME大容量電動助吸器0.1-100ml
Levo ME 面議德國艾本德eppendorf Easypet 3電動助吸器/大容量移液器
Easypet 3 面議儀表網(wǎng) 設(shè)計制作,未經(jīng)允許翻錄必究 .? ? ?
請輸入賬號
請輸入密碼
請輸驗證碼
請輸入你感興趣的產(chǎn)品
請簡單描述您的需求
請選擇省份
聯(lián)系方式
北京澤平科技有限責(zé)任公司