【
儀表網(wǎng) 研發(fā)快訊】中國科學技術(shù)大學郭光燦院士團隊在光量子行走領(lǐng)域取得重要進展。該團隊李傳鋒、許小冶、韓永建等人與合肥綜合性國家科學中心董少鈞以及南方科技大學翁文康等合作,利用人工神經(jīng)網(wǎng)絡(luò)作為開放系統(tǒng)中混合量子態(tài)的有效擬設(shè),并通過改進自然梯度下降算法有效提高神經(jīng)網(wǎng)絡(luò)的訓練效率,在具有內(nèi)稟高維結(jié)構(gòu)的開放光量子行走系統(tǒng)中,首次實現(xiàn)高保真度混合量子態(tài)重構(gòu)。相關(guān)成果3月15日發(fā)表在國際知名學術(shù)期刊《科學·進展》上。
量子行走被認為在量子模擬和量子計算中具有重要研究價值。近期研究表明,處在特定噪聲環(huán)境下的開放量子行走相對于封閉情形,在解決某些特定問題上具有顯著的效率優(yōu)勢。充分挖掘開放量子行走的計算和模擬能力,必須要對其演化狀態(tài)進行完整刻畫。然而,傳統(tǒng)的態(tài)層析方法并不適用于具有一定規(guī)模的開放量子系統(tǒng)。原因在于,一方面是對混合量子態(tài)的重構(gòu)所消耗的物理資源隨系統(tǒng)規(guī)模呈指數(shù)增長,另一方面,在大規(guī)模量子系統(tǒng)中難以實現(xiàn)完整態(tài)層析所必需的完備測量。因此,如何高效表征混合量子態(tài)是各個實驗體系都面臨的重大挑戰(zhàn)。最近,基于人工神經(jīng)網(wǎng)絡(luò)學習開放量子系統(tǒng)的方法在理論上被提出。然而,隨著系統(tǒng)規(guī)模不斷增加,神經(jīng)網(wǎng)絡(luò)要保持對其混合量子態(tài)的高表達能力就需要更為復雜的網(wǎng)絡(luò)結(jié)構(gòu),因此直接應(yīng)用該方法重構(gòu)大規(guī)模開放量子行走中的演化狀態(tài),將面臨復雜的網(wǎng)絡(luò)訓練問題。
在本工作中,研究團隊構(gòu)建新型干涉測量裝置以顯著增加測量基數(shù)目,并通過建立開放量子行走系統(tǒng)與受限玻爾茲曼機網(wǎng)絡(luò)模型之間的映射,同時開發(fā)新的梯度優(yōu)化算法高效訓練神經(jīng)網(wǎng)絡(luò),最終完成對具有一定規(guī)模的開放量子行走系統(tǒng)中混合量子態(tài)的有效表征。相對于傳統(tǒng)的態(tài)層析方法,這種有效的神經(jīng)網(wǎng)絡(luò)態(tài)層析僅利用部分所需的測量即可高保真度地重構(gòu)混合量子態(tài)。為了增加神經(jīng)網(wǎng)絡(luò)訓練數(shù)據(jù),研究團隊在前期構(gòu)建的大尺度光量子行走實驗系統(tǒng)基礎(chǔ)上,進一步引入一個時間域上的不等臂干涉儀實現(xiàn)不同格點位置之間的干涉測量,從而顯著地提高了測量基數(shù)目。結(jié)果表明,基于神經(jīng)網(wǎng)絡(luò)技術(shù),僅利用相對于傳統(tǒng)態(tài)層析方法50%的測量基數(shù)目,即可實現(xiàn)平均保真度高達97.5%的開放光量子行走的完整混合量子態(tài)表征。此外,為提高復雜神經(jīng)網(wǎng)絡(luò)的訓練效率,研究團隊在自然梯度下降算法的基礎(chǔ)上,找到合適的新度規(guī),開發(fā)出更為有效的廣義自然梯度下降算法。研究結(jié)果表明,相比于傳統(tǒng)梯度下降算法,采用新算法的神經(jīng)網(wǎng)絡(luò)訓練迭代次數(shù)可以減少一個數(shù)量級,并且可以高效規(guī)避局域極小值的影響,使損失函數(shù)到達更低取值,從而極大提高重構(gòu)保真度。
這種高效的神經(jīng)網(wǎng)絡(luò)混合量子態(tài)層析方法為開放量子行走的廣泛應(yīng)用提供了新的可能性,并為進一步研究噪聲輔助的量子計算和量子模擬奠定了基礎(chǔ)。
圖1. 神經(jīng)網(wǎng)絡(luò)模型與開放量子行走系統(tǒng)之間的映射。
圖2. 開放的光量子行走實驗系統(tǒng)。
中國科學院量子信息重點實驗室博士后王琴琴與合肥綜合性國家科學中心副研究員董少鈞為本工作共同第一作者。該研究工作得到了科技創(chuàng)新2030重大項目、國家自然科學基金會、中國博士后科學基金會和中國科學技術(shù)大學的資助。許小冶教授感謝中國科學院青年創(chuàng)新促進會的大力支持。(中國科學院量子信息重點實驗室、中國科學院量子信息和量子科技創(chuàng)新研究院、物理學院、科研部)
所有評論僅代表網(wǎng)友意見,與本站立場無關(guān)。