逆境模擬及植物生長(zhǎng)監(jiān)測(cè)系統(tǒng) PlantArray
逆境模擬及植物生長(zhǎng)監(jiān)測(cè)系統(tǒng)是一套高通量,以植物生理學(xué)為基礎(chǔ)的高精度表型系統(tǒng),可以完成整個(gè)植物生長(zhǎng)周期中不同環(huán)境下的SPAC因子的測(cè)量。連續(xù)不間斷的獲取陣列內(nèi)所有植物的監(jiān)測(cè)數(shù)據(jù),實(shí)時(shí)監(jiān)控和及時(shí)調(diào)整每個(gè)培養(yǎng)容器中的土壤條件,包含土壤水分、鹽分。
Israeli Center of Research Excellence facility in Rehovot
逆境模擬及植物生長(zhǎng)監(jiān)測(cè)系統(tǒng)的主要優(yōu)點(diǎn):
生理學(xué)特征的監(jiān)測(cè)和數(shù)據(jù)高通量分析,如生長(zhǎng)速率、蒸騰速率、水分利用率、氣孔導(dǎo)度等特征;
連續(xù)控制不同的土壤和水分環(huán)境(如干旱、鹽分或化學(xué)物質(zhì));
理想的實(shí)驗(yàn)平臺(tái):
全自動(dòng);
均一檢測(cè);
適用于不同類型植物;
精確測(cè)量;
非破壞性;
實(shí)現(xiàn)隨機(jī)分組實(shí)驗(yàn)設(shè)計(jì);
3-4周的實(shí)驗(yàn)相當(dāng)于4-6個(gè)月的人工工作;
操作簡(jiǎn)單,維護(hù)費(fèi)用幾可忽略;
靈活的設(shè)計(jì)能夠滿足任何溫室中不同方面的科學(xué)研究需求。
實(shí)時(shí)統(tǒng)計(jì)分析-為了數(shù)據(jù)的可靠快速分析,提供多階乘ANOVA或配對(duì)T檢驗(yàn);
實(shí)驗(yàn)?zāi)康?在實(shí)驗(yàn)運(yùn)行中為了確保處理的效果可以獲取優(yōu)化的實(shí)驗(yàn)參數(shù);
快速定量選擇-提供植物對(duì)于不同環(huán)境需求生理反應(yīng)的評(píng)級(jí)和評(píng)分的簡(jiǎn)況;
復(fù)雜實(shí)驗(yàn)通過(guò)簡(jiǎn)要圖像呈現(xiàn)生理參數(shù)與環(huán)境條件的空間和時(shí)間關(guān)系,顯示趨勢(shì)、異常和比率。
逆境模擬及植物生長(zhǎng)監(jiān)測(cè)系統(tǒng)的應(yīng)用領(lǐng)域:
非生物逆境脅迫研究,比如:干旱、淹水、營(yíng)養(yǎng)、有毒物質(zhì)等脅迫研究;
在農(nóng)作物、蔬菜、樹(shù)木、藥用植物、燃料作物等方面的育種研究;
根系的土壤穿透力、水通量研究;
生物激素與養(yǎng)分研究;
生理生態(tài)學(xué)研究等。
測(cè)量參數(shù):
直接測(cè)量參數(shù): | ||
重量 | 空氣濕度 | 空氣溫度 |
輻射(PAR) | 氣壓 | 土壤水分 |
土壤電導(dǎo)率 | 土壤溫度 | 日蒸騰 |
計(jì)算參數(shù): | ||
植物生物量增益 | 日蒸騰 | 水分利用效率 |
氣孔導(dǎo)度 | 抗脅迫因子 | 水分相對(duì)含量 |
根穿透力 | 根系水通量 | VPD |
逆境模擬及植物生長(zhǎng)監(jiān)測(cè)系統(tǒng)的技術(shù)參數(shù):
l PIU單元含有3個(gè)數(shù)字通道、1個(gè)模擬通道、1個(gè)稱重式蒸滲儀通道,所有的傳感器可以同時(shí)連續(xù)工作;
l 德國(guó)高精度稱重模塊,測(cè)重量50kg(測(cè)量范圍根據(jù)具體配置而定),測(cè)量精確度±0.02%稱重量;
l 植物生長(zhǎng)容器滿足多種植物的生長(zhǎng)需求,容積1.5-60L,具有防漏水、濺水設(shè)計(jì);
l 可以根據(jù)植物生長(zhǎng)時(shí)間或生長(zhǎng)容器重量選擇灌溉模式,灌溉系統(tǒng)采用以色列精準(zhǔn)的滴灌系統(tǒng)控制,能夠精確的控制澆水、施肥或施加生物激素的量;
l 土壤類、氣象類傳感器選擇美國(guó)高精度傳感器測(cè)量土壤含水量、溫度、電導(dǎo)率,空氣溫濕度、PAR、氣壓等參數(shù);
應(yīng)用案例
生物刺激劑在充分灌溉和干旱條件下對(duì)甜椒的定量研究
代表文獻(xiàn):
1. Alemu, M. D. et. al., (2024) Dynamic physiological response of tef to contrasting water availabilities Front. Plant Sci. Frontiers. DOI: 10.3389/fpls.2024.1406173,
2. Paul, M. et. al., (2024), Precision phenotyping of a barley diversity set reveals distinct drought response strategies Front. Plant Sci. Frontiers. DOI: 10.3389/fpls.2024.1393991,
3. Jiang. R. et. al., (2024) Leveraging "golden-hour" WUE for developing superior vegetable varieties with optimal water-saving and growth traits Vegetable Research. DOI: 10.48130/vegres-0024-0001
4. Dewi, E.S. et al. (2023) Agronomic and Physiological Traits Response of Three Tropical Sorghum (Sorghum bicolor L.) Crs to Drought and Salinity Agronomy, 13(11), p. 2788. DOI: 10.3390/agronomy.
5. Kahit Itzhak, et. al., (2023) Sounds emitted by plants under stress are airborne and informative Cell. DOI: 10.1016/j.cell.2023.03.009
6. Yaara, A. et. al., (2023) Leaf hydraulic maze: Abscisic acid effects on bundle sheath, palisade, and spongy mesophyll conductance. Plant Physiology. DOI: 10.1093/kiad372
7. Fang, P. et. al., (2023) Understanding water conservation vs. profligation traits in vegetable legumes through a physio-transcriptomic-functional approach Horticulture Research, DOI: 10.1093/hr/uhac287
8. Negin, B. et. al., (2022) Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering New Phytologist DOI: 10.1111/nph.18615
9. Markovich, O et. al., (2022) Low Si combined with drought causes reduced transpiration in sorghum Lsi1 mutant Plant Soil DOI: 10.1007/s11104-022-05298-4
10. Mishra R. et. al., (2021) Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants Molecular Plant Pathology DOI: 10.1111/mpp.13172
11. Shahar Weksler et. al., (2021) Continuous seasonal monitoring of nitrogen and water content in lettuce using a dual phenomics system Jornal of Experimental Botany DOI: 10.1093/jxb/erab561
12. Xinyi Wu. et al. Unraveling the Genetic Architecture of Two Complex, Stomata-Related Drought-Responsive Traits by High-Throughput Physiological Phenotyping and GWAS in Cowpea. Frontiers in Genetics, 743758(2021)
13. AK Pandey. et al. Functional physiological phenotyping with functional mapping: a general framework to bridge the phenotype-genotype gap in plant physiology. iScience, 102846(2021).
14. Yanwei Li. et al. High-Throughput physiology-based stress response phenotyping: Advantages, applications and prospective in horticultural plants. Horticultural Plant Journal (2020)
15. Weksler, S. et al. A Hyperspectral-Physiological Phenomics System: Measuring Diurnal Transpiration Rates and Diurnal Reflectance. Remote Sensing 12, 1493 (2020).
16. Illouz-Eliaz, N. et al. Mutations in the tomato gibberellin receptors suppress xylem proliferation and reduce water loss under water-deficit conditions. Journal of Experimental Botany (2020).
17. Dalal, A. et al. A High Throughput Gravimetric Phenotyping Platform for Real Time Physiological Screening of Plant Environment Dynamic Responses. bioRxiv (2020).
18 . Yaaran, A., Negin, B. & Moshelion, M. Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response. Plant Science 281, 31-40, doi:https://doi.org/10.1016/j.plantsci.2018.12.027 (2019).
19 . Illouz-Eliaz, N. et al. Multiple Gibberellin Receptors Contribute to Phenotypic Stability under Changing Environments. The Plant Cell 31, 1506, doi:10.1105/tpc.19.00235 (2019).
20 . Gosa, S. C., Lupo, Y. & Moshelion, M. Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: New tools to support pre-breeding and plant stress physiology studies. Plant Science 282, 49-59, doi:https://doi.org/10.1016/j.plantsci.2018.05.008 (2019).
21 . Dalal, A. et al. Dynamic Physiological Phenotyping of Drought-stressed Pepper Plants Treated with'Productivity-Enhancing’and'Survivability-Enhancing’Biostimulants. Frontiers in Plant Science 10, 905 (2019).
22 . Dalal, A. et al. A High-Throughput Physiological Functional Phenotyping System for Time-and Cost-Effective Screening of Potential Biostimulants. bioRxiv, 525592 (2019).
23 . Galkin, E. et al. Risk‐management strategies and transpiration rates of wild barley in uncertain environments. Physiologia plantarum (2018).
24 . Yaaran, A., Negin, B. & Moshelion, M. Role of guard-cell ABA in determining maximal stomatal aperture and prompt vapor-pressure-deficit response. bioRxiv, 218719 (2017).
25 . Nir, I. et al. The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure. The Plant Cell, tpc. 00542.02017 (2017).
以色列 Plant-Ditech