農產品品質檢測儀F-750是一款用于分析與農產品品質密切相關的農產品內部及外部特性的測量儀器。
NIR(近紅外測定)技術在成套設備中的應用可為我們提供客觀量化的質量標準,已在生產中應用多年。我們便攜式供電設備把近紅外分析技術帶給田間種植者,為作物收割前提供更好、更一致的作物成熟度的測定。
F-750可進行物質的定量估算(如葉綠素)、確定多種物質的特性(如成熟度、TSS可溶性固形物、DM糖)并進行定性分析(如風味指數、個人偏好指數)。
主要功能
針對農場品的品質進行檢測
快速測量(4~6秒)
非破壞測量
帶定位系統(tǒng),便于裁剪制圖
野外可視半透顯示屏
充電/更換電池
SD卡數據存儲
可創(chuàng)建特殊品種的模型
收獲前成熟度評估
采后質量檢驗
測量參數
可測量可溶性固形物(糖度)、干物質、內部顏色、外部顏色、可滴定酸等指標
應用領域
主要應用于果實成熟度和甜度相關參數的無損評估,包括田間作物管理和收獲期評估、果實儲藏、果實催熟及果實零售的各個環(huán)節(jié)。
主要技術參數
光譜儀:卡爾蔡司MMS-1光譜儀
光譜范圍:310-1100 nm
光譜樣點大小: 3 nm
光譜分辨率:8-13 nm
光源:鎢氙燈
鏡頭:鍍膜增益近紅外線鏡頭
快門:鍍金參考標準
顯示:光下可見液晶屏
PC接口:USB SD卡
記錄每次測量參數:原始數據,反射,吸收,一階導數吸收,二階導數吸光度數據
電源:可拆卸3100毫安時鋰離子電池
電池壽命:大于1600次
數據存儲:可拆卸32GB SD卡
機箱:電鍍鋁
尺寸:18×12×4.4cm
重量:1.05 kg
工作流程
構建模型
F-750農產品質量測定儀可以對10-200種水果的品質進行測定;
利用可選擇性測量方法非破壞性測量每種水果的質量參數(如:利用折射計測定白利糖度);
內置建模軟件可結合步驟1和步驟2的測量數據創(chuàng)建新的模型;
F-750可利用新創(chuàng)建的模型對感興趣參數進行無損估計;
F-750可以使用多種模型創(chuàng)建自定義質量指標,例如:結合受試農產品的糖度、顏色、酸度和干物質量等綜合指標可確定受試農產品的食用質量指標。
計算測量值請鍵入文字或網站地址,或者上傳文檔。
與傳統(tǒng)光譜儀(利用光譜波段的比值進行計算)不同,F-750利用使用者或軟件選取在310-1100nm光譜范圍內的光譜集建立PLS模型進行計算。
軟件模型采用非線性迭代偏最小二乘回歸(NIPLS)建立權重系數來衡量已知參數與不同波長間的關系。F-750可計算出樣品的二階導數光譜并應用各波長的權重系數獲取實際測量圖譜。
量化的測量精度 (確定測量精度)
F-750結合了所選光譜集與樣品光譜間的實際差異,以及預期權重系數,從而為每次測量提供了一個精確的置信度。)
選購指南
主機、說明書、葉夾 箱子和相關配件
基本配置
應用實例
產地:美國Felix
參考文獻
原始數據來源:Google Scholar
1. V.A. McGlone, R.B. Jordan, R.J. Seelye, C.J. Clark (2003) Dry-matter – a better predictor of the post-storage soluble solids in apples? Postharvest Biol. Technol., 28, pp. 431–435
2. P. Subedi1, K. Walsh1, and P. Purdy2 (2010) Determination of Optimum Maturity Stages of Mangoes Using Fruit Spectral Signatures, China Int Mango Conf 1-12
3. M. Cecilia Rousseaux, Juan P. Benedetti, Peter S. Searles (2008) Handheld NIR and grape fruit quality. 1-2
4. Kerry B. WalshAC, John A. GuthrieB and Justin W BurneyA (2000) Aust. J Application of commercially available, lowcost,miniaturised NIR spectrometers to the assessment of the sugar content of intact fruit. Plant Physiol, 27: 1175-1186
5. P.P. Subedi a, K.B. Walsh a, G. Owensb (2007) Prediction of mango eating quality at harvest using short-wavenear infrared spectrometry. Postharvest Biology and Technology, 43: 326–334
6. Kerry B.Walsh1, Robert L. Long1 and Simon G. Middelton2 (2007) Use of near infra-red spectroscopy in evaluation of source-sink manipulation to increase the soluble sugar content of stonefruit. Journal of Horticultural Science & Biotechnology, (82:2) 316–322
7. Downey, G. (1996) measured NIR interactance (700–1100) spectra from six selected sites on the dorsal and ventral surfaces of each fish side on farmed salmon, resulting in 294 spectra from different sites The measurements were done through skin and scales by an unspecified fiber-optic interactance probe. Referencechemical values of fat and moisture were determined from excised flesh from the different NIR measurement sites. Fat ranges for the sites were 2.3–23.0% and moisture 57.9–74.7%. Spectral measurements on the dorsal surface gave lowest prediction errors (bias corrected) for fat 2.0% and moisture 1.45%.” Non-invasive and non-destructive percutanous analysis of farmed salmon flesh by near infrared spectroscopy. Food Chem. 55:305–311.
8. Cozzolino, D., Parker, M., Dambergs, R. G., Herderich, M. and Gishen, M. (2006) AIn the Vis region (400–700 nm) the spectra with very low absorption were those from Day 0 of the fermentations, that is, grape must before fermentation commenced. Samples taken after Day 0 showed a marked increase in anthocyanin absorption around 540 nm, thus demonstrating the extraction of these phenolic pigments from grape skins into the wine as the fermentaition proceeded.Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale. Biotechnol.Bioeng., 95: 1101–1107. doi: 10.1002/bit.21067
9. Phul P. Subedi a , Kerry B. Walsh a , and David. W. Hopkins b (2012) Assessment of titratable acidity in fruit using short wave near infrared spectroscopy. Part B: intact fruit studies. Near Infrared Spectrosc., (20) 459-463