德國(guó)進(jìn)口Bransonic全系列CPN-916-040
變頻器的出現(xiàn)為工業(yè)自動(dòng)化控制、電機(jī)節(jié)能帶來了革新。工業(yè)生產(chǎn)中幾乎離不開變頻器,即使在日常生活中,電梯、變頻空調(diào)也成為的部分,變頻器已經(jīng)開始滲入到生產(chǎn)、生活的各個(gè)角落。然而,變頻器也帶來了許多的困擾,其中損傷電機(jī)就是最典型的現(xiàn)象之一。
很多人已經(jīng)發(fā)現(xiàn)了變頻器對(duì)電機(jī)損傷的現(xiàn)象。例如,某水泵廠,近兩年來,他的用戶頻繁報(bào)告水泵在保修期內(nèi)發(fā)生損壞的現(xiàn)象。而過去,這個(gè)水泵廠的產(chǎn)品質(zhì)量十分可靠。經(jīng)過調(diào)查,發(fā)現(xiàn)這些損壞的水泵都是用變頻器驅(qū)動(dòng)的。
盡管變頻器損傷電機(jī)的現(xiàn)象越來越被人們所關(guān)注,但是人們對(duì)造成這種現(xiàn)象的機(jī)理還不清楚,更不知道如何來預(yù)防。分享本文的目的是解決這些困惑。
變頻器對(duì)電機(jī)的損傷
變頻器對(duì)電機(jī)的損傷包括兩個(gè)方面,定子繞組的損傷和軸承的損傷,如下圖所示。這種損傷一般發(fā)生在幾周至十幾個(gè)月內(nèi),具體時(shí)間與變頻器的品牌、電機(jī)的品牌、電機(jī)的功率、變頻器的載波頻率、變頻器與電機(jī)之間的電纜長(zhǎng)度、環(huán)境溫度等諸多因素有關(guān)。電機(jī)的早期意外損壞給企業(yè)的生產(chǎn)帶來巨大的經(jīng)濟(jì)損失。這種損失不僅是電機(jī)維修和更換帶來的費(fèi)用,更主要的是意外停產(chǎn)帶來的經(jīng)濟(jì)損失。因此,在使用變頻器驅(qū)動(dòng)電機(jī)時(shí),必須對(duì)電機(jī)損傷的問題有足夠的重視。
變頻器驅(qū)動(dòng)與工頻驅(qū)動(dòng)的區(qū)別
要了解工頻電機(jī)在變頻器驅(qū)動(dòng)條件下更容易損壞的機(jī)理,首先了解變頻器驅(qū)動(dòng)電機(jī)的電壓與工頻電壓有什么區(qū)別。然后再了解這種差別是如何對(duì)電機(jī)產(chǎn)生不良影響的。
變頻器的基本構(gòu)造如圖2所示,包括整流電路與逆變電路兩部分。整流電路為普通二極管與濾波電容構(gòu)成的直流電壓輸出電路,逆變電路將直流電壓變換成脈寬調(diào)制的電壓波形(PWM電壓)。因此,變頻器驅(qū)動(dòng)電機(jī)的電壓波形是脈寬變化的脈沖波形,而不是正弦波電壓波形。用脈沖電壓驅(qū)動(dòng)電機(jī)就是導(dǎo)致電機(jī)容易損壞的根本原因。
變頻器損傷電機(jī)定子繞組的機(jī)理
脈沖電壓在電纜上傳輸時(shí),如果電纜的阻抗與負(fù)載的阻抗不匹配,在負(fù)載端會(huì)產(chǎn)生反射。反射的結(jié)果是,入射波與反射波疊加,形成更高的電壓,它的幅度最大可以達(dá)到直流母線電壓的2倍,大約相當(dāng)于變頻器輸入電壓的3倍,如圖3所示。過高的尖峰電壓加在電機(jī)定子的線圈上,對(duì)線圈造成電壓沖擊,頻繁的過電壓沖擊會(huì)導(dǎo)致電機(jī)過早失效。
變頻器驅(qū)動(dòng)的電機(jī)受到尖峰電壓的沖擊后,它的實(shí)際壽命與很多因素,包括,溫度、污染、振動(dòng)、電壓、載波頻率以及線圈絕緣的工藝等因素有關(guān)。
變頻器的載波頻率越高,輸出電流波形越接近正弦波,這會(huì)降低電機(jī)的運(yùn)行溫度,從而延長(zhǎng)絕緣的壽命。但是,更高的載波頻率意味著每秒鐘產(chǎn)生的尖峰電壓數(shù)量更多,對(duì)電機(jī)的沖擊的次數(shù)更多。圖4給出了絕緣壽命隨著電纜長(zhǎng)度與載波頻率的變化。從圖中可知,對(duì)于200英尺長(zhǎng)的電纜,當(dāng)載波頻率從3kHz提高到12kHz(變化4倍)時(shí),絕緣的壽命從大約8萬小時(shí)降低到2萬小時(shí)(相差4倍)。
載波頻率對(duì)絕緣的影響
電機(jī)的溫度越高,絕緣的壽命越短,如圖5所示,當(dāng)溫度升高到75?C時(shí),電機(jī)的壽命只有50%。變頻器驅(qū)動(dòng)的電機(jī),由于PWM電壓包含較多的高頻成份,電機(jī)溫度會(huì)遠(yuǎn)高于工頻電壓驅(qū)動(dòng)的情況。
變頻器損傷電機(jī)軸承的機(jī)理
變頻器損傷電機(jī)軸承的原因是,有流過軸承的電流,并且這種電流處于斷續(xù)連通的狀態(tài),斷續(xù)連通的電路會(huì)產(chǎn)生電弧,電弧燒毀了軸承。
導(dǎo)致交流電機(jī)的軸承中流過電流的原因主要有兩個(gè),第一,內(nèi)部電磁場(chǎng)不平衡產(chǎn)生的感應(yīng)電壓,第二,雜散電容引起的高頻電流通路。
理想交流感應(yīng)電機(jī)內(nèi)部的磁場(chǎng)是對(duì)稱的,當(dāng)三相繞組的電流相等,并且相位相差120?時(shí),不會(huì)在電機(jī)的軸桿上感應(yīng)出電壓。變頻器輸出的PWM電壓導(dǎo)致電機(jī)內(nèi)部的磁場(chǎng)不對(duì)稱時(shí),就會(huì)在軸桿上感應(yīng)出電壓,電壓的幅度在10~30V,這與驅(qū)動(dòng)電壓有關(guān),驅(qū)動(dòng)電壓越高,軸桿上的電壓越高。
當(dāng)這個(gè)電壓的數(shù)值超過軸承中的潤(rùn)滑油的絕緣強(qiáng)度時(shí),就會(huì)形成一個(gè)電流通路。軸桿旋轉(zhuǎn)過程中,在某個(gè)時(shí)刻,潤(rùn)滑油的絕緣又阻斷了電流。這個(gè)過程類似于機(jī)械式開關(guān)的通斷過程,這個(gè)過程中會(huì)產(chǎn)生電弧,燒蝕軸桿、滾珠、軸碗的表面,形成凹坑。如果沒有外部振動(dòng),小凹坑不會(huì)產(chǎn)生過大的影響,但是如果有外部振動(dòng)時(shí),會(huì)產(chǎn)生凹槽,這對(duì)電機(jī)的運(yùn)轉(zhuǎn)影響很大。
另外,實(shí)驗(yàn)表明,軸桿上的電壓還與變頻器輸出電壓的基波頻率有關(guān),基波頻率越低,軸桿上的電壓越高,軸承損傷越嚴(yán)重。
在馬達(dá)工作的初期,潤(rùn)滑油溫度較低的時(shí)候,電流幅度在5-200mA,這么小的電流不會(huì)對(duì)軸承產(chǎn)生任何損壞。但是,當(dāng)馬達(dá)運(yùn)行一段時(shí)間后,隨著潤(rùn)滑油溫度升高,峰值電流會(huì)達(dá)到5-10A,這會(huì)產(chǎn)生飛弧,在軸承部件的表面形成小坑。
電機(jī)定子繞組的保護(hù)
當(dāng)電纜的長(zhǎng)度超過30米時(shí),現(xiàn)代變頻器必然會(huì)在電機(jī)端產(chǎn)生尖峰電壓,縮短電機(jī)的壽命。防止電機(jī)出現(xiàn)損傷,有兩個(gè)思路,一個(gè)是采用繞組絕緣抗電強(qiáng)度更高的電機(jī)(一般稱為變頻電機(jī)),另一個(gè)是采取措施減小尖峰電壓。前一種措施適合于新建的項(xiàng)目,后一種措施適合于對(duì)已有的電機(jī)進(jìn)行改造。
目前常用的電機(jī)保護(hù)方法有以下4個(gè):
①在變頻器的輸出端安裝電抗器:這個(gè)措施,但是需要注意的是,這個(gè)方法對(duì)于較短的電纜(30米以下)有一定效果,但是有時(shí)效果不夠理想,如圖6(c)所示;
②在變頻器的輸出端安裝dv/dt濾波器:這個(gè)措施適用于電纜長(zhǎng)度小于300米的場(chǎng)合,價(jià)格略高于電抗器,但是效果有了明顯的改善,如圖6(d)所示;
?、墼谧冾l器的輸出端安裝正弦波濾波器:這個(gè)措施是的。因?yàn)樵谶@里,將PWM脈沖電壓變成了正弦波電壓,是電機(jī)工作在與工頻電壓相同的條件下,尖峰電壓的問題得到了*的解決(電纜再長(zhǎng),也不會(huì)出現(xiàn)尖峰電壓了);
?、茉陔娎|與電機(jī)接口的位置安裝尖峰電壓吸收器:前面幾個(gè)措施的缺點(diǎn)是當(dāng)電機(jī)的功率較大時(shí),電抗器或?yàn)V波器的體積、重量很大,價(jià)格較高,另外,電抗器和濾波器都會(huì)導(dǎo)致一定的電壓降,影響電機(jī)的輸出力矩,采用變頻器尖峰電壓吸收器能夠克服這些缺點(diǎn)。航天科工集團(tuán)二院706所開發(fā)的SVA尖峰電壓吸收器,采用先進(jìn)的電力電子技術(shù)和智能控制技術(shù),是解決電機(jī)損傷的理想設(shè)備。另外,SVA尖峰吸收器還能保護(hù)電機(jī)的軸承。
尖峰電壓吸收器是一種新型的電機(jī)保護(hù)裝置,如圖7所示(航天科工集團(tuán)的SVA型號(hào))。并聯(lián)連接電機(jī)的電源輸入端。
SVA尖峰電壓吸收器的原理框圖如圖8所示,它的工作過程如下:
①尖峰電壓檢測(cè)電路實(shí)時(shí)檢測(cè)電機(jī)電源線上的電壓幅度;
?、诋?dāng)檢測(cè)到電壓的幅度超過設(shè)定的閾值時(shí),控制尖峰能量緩沖電路,使其吸收尖峰電壓的能量;
?、郛?dāng)尖峰電壓的能量充滿尖峰能量緩沖器時(shí),尖峰能量吸收控制閥門打開,使緩沖器中的尖峰能量泄放到尖峰能量吸收器,將電能轉(zhuǎn)變成熱能;
?、軠囟缺O(jiān)控器監(jiān)測(cè)尖峰能量吸收器的溫度,當(dāng)溫度過高時(shí),適當(dāng)關(guān)閉尖峰能量吸收控制閥門,減小能量的吸收(在保證電機(jī)受到保護(hù)的前提下),避免尖峰電壓吸收器過熱而損壞;
?、軠囟缺O(jiān)控器監(jiān)測(cè)尖峰能量吸收器的溫度,當(dāng)溫度過高時(shí),適當(dāng)關(guān)閉尖峰能量吸收控制閥門,減小能量的吸收(在保證電機(jī)受到保護(hù)的前提下),避免尖峰電壓吸收器過熱而損壞;
?、葺S承電流吸收電路的作用是將軸承電流吸收掉,保護(hù)電機(jī)軸承。
尖峰吸收器與前面所述的du/dt濾波器、正弦波濾波器等電機(jī)保護(hù)方法相比,最大的好處是,體積小、價(jià)格低,安裝簡(jiǎn)便(并聯(lián)安裝)。特別是功率較大的場(chǎng)合,尖峰吸收器在價(jià)格、體積、重量等方面的優(yōu)點(diǎn)很突出。另外,由于是并聯(lián)安裝,不會(huì)產(chǎn)生電壓降,而du/dt濾波器和正弦波!
德國(guó)進(jìn)口Bransonic全系列CPN-916-040
Hansen | COUPLING SOCKET;ML1-H11,HANSEN SHUT-OFF COUPLING SOCKET,HANSENORDER nr.:ML1-H11 |
DANFOSS | KP1/0.15-1.2Mpa |
Contrinex | ND15-H3-M30-10MT-230 |
CEAG | GHG4110141R0030 |
Duometric | Software x236 166666603 |
Volpi Intraled | PN:74425.600 |
Krohne | OPTIWAVE6300C01ED |
ACE | CF 18-19 |
Phoenix | 30 30 43 3 |
ABB | 764K001N-2 |
Bonfiglioli | VF63 P1 P90B14 |
Bayer | 1283-230-0 1185-230-5 |
AIRTEC | 1350-20-C12 9.910.0274.08 |
PERMA | 101451 26.004.001 |
brinkmann | TA600/360+001 |
HBM | MP55 |
Sitema | SITEMA |
HEBOTEC | 11-KE10025FRT |
igus | Rotating plate PRT-01-150 |
Witte | 37864 |
KNOTH | 2.1MV5-33-24V/DC |
SUNON | DP200A |
unilux | 04-1439-DC-2 |
MERKEL | Dust ring 230X250X10,2 |
IMI SENSORS | MIL-C-5015 |
Bransonic | CPN-916-040 |
ARO | 66612B-244-C |
NORD | SK 92672AX IEC90, M2 269Nm,i42.04, M1,fB1.30 |
Stauff | B2T-A48SS-P5 240-4800 PSI 16.5-331 BAR |
SALTUS | 8602000771 |
SIMPLEX | TYCO 3000-9018 |
OMRON | Powerstar JLZ 150KN-ED HQI-E 150W/N E27 Clear/Natural white Mfr.:OSRAM |
TEMPRESS | Nadel G1 / 2B SS2303 H136 |
Switzer | P81127L11 |
GEFRAN | 110503912 |
VIPA | 253-1DP01 |
hydac | EBS RV-20-G1 11SMN9 |
Bucher | RKVE-G10-05-Z4 |
DATA DISPLAY | C91‐A246‐CA0 |
IKS SOTTRUM | MV-PT100 |
Buerkert | 782849 |
SCANLAB | Artnr. 129520 |
casappa | PLP10-2D1-81E1-LOB/OA-N-EL-LOA-H-VPER |
LENZE | 13.530.75.1.2.4;Nr.00847935 |
OMRON | DH48J-A |
Voith | DSG-B10113 |
BLEICHERT | Upper right plate, order number: 1.40.1050.R, |
Schneider | LUB12 |
NORMYDRO | EAT-18-16 |
speck | Y-2841.0081 24VDC |
CONTROLS JOHNSON | V46AC-9951 RY20608 ISO 228-G3/4 RANGE:5 to 18 BAR 0.75 m cap. 1/4‘’ODF |
Bucher | QX62-080/52-040R140 |
elma | 46152 -V |
SIEMENS | 6AU1435-0AA00-0AA1 |
AVTRON | HS35A YIFCU0XA000 |
NIMAK | F-MC-0044 |
ACAM | PT2G-C-2B |
P+F | NBB5-18GM50-E2-V1 |
Hansen | HA 1502200 |
mts | GHM0660MURB 21AO |
Atlas Copco | 211960830 |
Banner | BT23S |
Buerklin | 78 F 241 |
FLEXLIFT | FFRT-0035/141941_VM2015202115 |
AECO | SC30M-CE25 PNP NO+NC K 10/55Vdc I=300mA |
Telemecanique | IB IL RS 232 |
Netter | NTS 180 HFL |
Interchim | Column Uptisphere,ODB,150X4.6mm,C18,3μm or equivalent |
hydac | 0240D005BN/HC |
Cavotec | S42-73908-020 Vite TE M8x20 AISI 304 |
Vahle | SA-KST25PH-28 155013 |
coax | VMK10NC 543468 |
TELCO | SMT 6000 SG T3 |
hydac | 0280 D 010 BH4HC |
R.M.YOUNG | 05103L |
Elaflex | ROTEX DN40 PN16 130MM |
Kytola | SR8-2.5-MD33-S |
jetedge | 46730 |
wandfluh | AS32061a PMAX 350bar 24VDC |
APEX | EX-504-B (APEX EXTENSION 1/2-44L) |
asco | MP-C-080238610-032-D PIPE:3/4(3023618215G033) |
Dopag | VEN C-450-20-00-NR.22034364-HILGER+KERN |
ganter | Extention pin M10 GN 613-5-A |
wachendorff | WDGI 58A-1024-ABN-124-S5R-E25 |
finder | 60.13.9.220.0040 |
PAULSTRA | 521450 |
SIEMENS | 6ES7 288-1SR60-0AA0 AC220V |
stilfreni | 9000.0026 |
GIGAVAC | G71A741 |
Beckhoff | C6140-0020 |
Wurth | 071554 22 |
KEB | 15.BR.110-6563 |
evertz | HZ009751 |
Lapp | 10191000 |
igus | E4.560.25.2.12 C |
dunkermotoren | BG44X50 SI SNR 88545.08000,PLG 52 6.25:1 SNR 88851.02031 |
KSB | ETB 200-150-315 GG AV10D504504; Q = 370m?/ h; H = 30m; SEQ ID NO: 9972731293; position: ME147-2 |
KNOTH | 4.4-2116 |
kistler | 6052CU20 |
VISHAY | 534B1102JC |
RAYONIC | Amplifier Ampli 10M |