法蘭連接型蒸汽流量計
LUGB系列渦街流量計主要用于工業(yè)管道介質流體的流量測量,如氣體、液體、蒸氣等多種介質。其特點是壓力損失小,量程范圍大,精度高,在測量工況體積流量時幾乎不受流體密度、壓力、溫度、粘度等參數的影響;無可動機械零件,因此可靠性高,維護量小;儀表參數能長期穩(wěn)定。渦街流量計采用壓電應力式傳感器,可靠性高,可在-20℃~+350℃的工作溫度范圍內工作,有模擬標準信號,也有數字脈沖信號輸出,容易與計算機等數字系統配套使用,是一種比較*、理想的流量儀表。
工作原理:
渦街流量計是基于卡門渦街原理,通過探頭檢測出漩渦分離頻率計算出流量并在信號變送器中轉換成相應的脈沖或電流信號輸出。
主要特點:
?精度較高,液體測量精度為±1.0%;氣體測量精度為±1.5%
?壓損小,約為孔板流量計的1/4,屬于節(jié)能流量儀表
?安裝方式靈活,可水平,垂直和不同角度傾斜安裝
?采用消擾電路和抗震動傳感頭,具有一定抗壞境震動性能
?無可動部件,儀表壽命長
技術參數:
儀表型號 | HLLU-N | HLLU-A | HLLU-B | HLLU- C | HLLU- D1/D2 |
信號輸出 | 脈沖 | 4-20mA | 無 | 4-20mA | 可選4-20mA或脈沖 |
供電電源 | 24VDC±15% | 24VDC±15% | 鋰電池 | 24VDC±15% | 24VDC±15%和鋰電池 |
通訊接口 | 無 | 無 | 無 | 可選RS485 | 可選RS485 |
精度等級 | 液體:1.0級 氣體:1.0級 蒸汽:1.5級 | 液體:1.0級 氣體:1.0級 蒸汽:1.5級 | 液體:1.0級 氣體:1.0級 蒸汽:1.5級 |
顯示器 | 無 | 有 | 有 |
儀表材質 | 304SS | 304SS | 304SS |
防爆等級 | 可選ExiaIICT5或ExdIIBT6 | 可選ExiaIICT5或ExdIIBT6 | 可選ExiaIICT5或ExdIIBT6 |
防護等級 | IP65 | IP65 | IP65 |
整機功耗 | <1W | <1W | <1W |
儀表通經 | DN15~DN300 | DN15~DN300 | DN15~DN300 |
安裝方式 | 法蘭夾持或一體化法蘭連接 | 法蘭夾持或一體化法蘭連接 | 法蘭夾持或一體化法蘭連接 |
耐壓等級 | 可選1.6MPa或2.5MPa | 可選1.6MPa或2.5MPa | 可選1.6MPa或2.5MPa |
介質溫度 | -40℃~250℃、-40℃~350℃ | -40℃~250℃、-40℃~350℃ | -40℃~250℃、-40℃~350℃ |
環(huán)境溫度 | -20℃~60℃ | -20℃~60℃ | -20℃~60℃ |
流量范圍:
儀表口徑(mm) | 液體流量范圍(m3/h) | 氣體流量范圍(m3/h) |
15 | 0.4~4 | 3~12 |
20 | 0.8~8 | 6~30 |
25 | 1.~12 | 9~55 |
32 | 2.0~20 | 12~120 |
40 | 3.0~30 | 20~200 |
50 | 5.0~50 | 30~300 |
65 | 8.0~80 | 50~500 |
80 | 12~120 | 80~800 |
100 | 20~200 | 120~1200 |
125 | 30~300 | 200~2000 |
150 | 40~400 | 300~3000 |
200 | 75~750 | 500~5000 |
250 | 110~1100 | 800~8000 |
300 | 160~1600 | 1100~ |
(300) | 160~1500 | 1560~ |
(400) | 180~3000 | 2750~ |
(500) | 300~4500 | 4300~ |
(600) | 450~6500 | 6100~ |
(800) | 750~10000 | 11000~ |
(1000) | 1200~17000 | 17000~ |
>(1000) | 協議 | 協議 |
注:表中(300)—(1000)口徑為插入式。
渦街流量計在蒸汽計量中的特性研究:
為持續(xù)強化蒸汽計量能力,在20世紀60年代,日本橫河電機株式會社與美國Eastech公司合作,共同研發(fā)了一種渦街流量計,它的耐高溫性能好,壓損不大,這種流量計廣泛應用于高溫條件下蒸汽流量的計量過程。因為流體流量和其輸出的頻率信號存在正相關性,同時頻率信號在流體組分、密度、壓力、溫度改變情況下仍能保持一定穩(wěn)定性;另外,此儀器的量程較大;均為不可動部件,穩(wěn)定性大大增強;結構相對簡單,安裝維護難度小,維護成本低?;谝陨蟽?yōu)點,該頻率信號被普遍使用在計量與工業(yè)過程的控制過程中。
到上世紀80年代,該流量計得以廣泛采用,但缺點是對于蒸汽介質上的測試仍是空白,只可進行渦街流量計的構造方式、DSP、流量量程、管道材質等方面加以升級,增強了渦街流量計的在液體與空氣中的測量準度。由于在蒸汽介質方面的探索上存在盲區(qū),在流量精度測量上長期以來備受業(yè)內人士的質疑。渦街流量計雖然技術上有了改進,但有待進一步改良,不管是在理論還是應用層面上均有諸多工作要做。近些年,世界范圍內的業(yè)內人士對于渦街流量計實施了多次探索,研究成果值得肯定。
1 蒸汽介質的影響因素
所謂渦街流量計(亦稱旋渦流量計),其工作機理是“卡門渦街”,是一類流體振蕩式的測量儀器。“卡門渦街”的原理是:待測管道流體中放進一根(或數根)非流線型截面的旋渦發(fā)生體,等到雷諾數到達特定數值,在旋渦發(fā)生體兩側分離出兩串交錯有序的旋渦,此過程具有交替性,我們將這種旋渦叫作卡門渦街 [3] 。在特定雷諾數范圍之間,旋渦的分離頻率同旋渦發(fā)生體與管道的幾何尺寸息息相關。數據表明,旋渦的分離頻率同流量存在正相關性,此頻率可通過傳感器獲得。以上渦街流量計與卡門渦街的關系可從圖1看出,二者有如下邏輯關系:
式中:
f 為旋渦分離頻率,Hz ;
S r 為斯特勞哈爾數;
U 1 為旋渦發(fā)生體兩側的平均流速,m/s ;
d 為旋渦發(fā)生體迎流面的寬度,m;
U 為被測介質來流的平均流速,m/s ;
m 為旋渦發(fā)生體兩側弓形面積與管道橫截面面積之比。不可壓縮流體中,由于流體密度 ? 不變,由連續(xù)性方程可得到: m = U / U 1 。
式中:K 為渦街流量計的儀表系數,1 /m 3 。通過式(3)不難看出,儀表系數 K 是渦街流量計的計量特性的定量表征,數據表明,其儀表系數只和其機械結構與斯特勞哈爾數有關,同來流流量并無相關性。
研究發(fā)現,蒸汽對渦街流量計計量特性存在較大影響??煽偨Y為三個方面:
**,從公式(3)中能夠得出,機械結構尺寸 D 、m 、 d 以及斯特勞哈爾數 S r 這些參數與K值大小存在較大關聯性?;谖锢碓硌芯堪l(fā)現,在流體介質條件存在差異情況下,機械結構尺寸的改變一般是與溫度的改變引發(fā)的熱脹冷縮效應息息相關。
**,雷諾數對斯特勞哈爾數 S r 產生較大影響,前者又與粘度密切相關,而粘度的差異性又取決于流體的差異,既而引發(fā)斯特勞哈爾數 S r 的區(qū)別。
第三,公式(3)的推導過程是以不可壓縮流體為前提的,當換作氣體介質時,由于可壓縮性的區(qū)別或許會引發(fā)儀表系數產生誤差。以上三個因素對于渦街流量計的影響將在下一節(jié)進一步探討。
2 蒸汽介質斯特勞哈爾數的影響
嚴格而言,斯特勞哈爾數是一種相似準則,是在討論流體力學中物理相似和?;且氲母拍?[4] 。其是用來表征旋渦頻率和阻流體特征尺寸、流速關系的。在特定雷諾數區(qū)間中,旋渦的分離頻率和旋渦發(fā)生體與管道的幾何尺寸密切相關,換言之斯特勞哈數可視為定量。
由圖2可看出,在 R eD =2×10 4 7×10 6 區(qū)間內,斯特勞哈數是定值,此也是儀表的正常工作區(qū)間。
現實情形下, S r 即便在 R eD =2×10 4 7×10 6 區(qū)間內,也與 R eD 的改變發(fā)生變化,參照1989年日本制訂的渦街流量計工業(yè)標準JISZ8766《渦街流量計——流量測量方法》。2002年加以修訂,把渦街流量計發(fā)生體的固定形式歸為兩種,《標準》規(guī)定的旋渦設計,發(fā)生體依據插入測量管頂端固定與否區(qū)別為標準1型與標準2型,它們的 S r 值存在較小區(qū)別,詳見表1數據。
標準2型 S r 的平均值是0.25033,它的標準偏差是0.12%;而標準1型為0.3%,現階段我國一般廣泛采用標準1型。而標準2型在日本橫河儀表研制的渦街流量計普遍采用。
通過雷諾數的推導公式不難得出,檢測時,蒸汽和空氣因為粘度的區(qū)別,會引發(fā)雷諾數存在差異。參照一般實驗情況下三類流體介質的工況差異,它們的運動粘度詳見表2:
式中:
? 表征介質密度;
D 表征管徑;
u 表征流速;
? 表征介質動力粘度;
v 表征介質運動粘度。
通過以上各參數數據不難發(fā)現,水的運動粘度*低,空氣*高,蒸汽介于二者之間。三者比例是1:15:4。所以若使雷諾數一致,應使水的流速*小,空氣*大,蒸汽在區(qū)間取值。在對儀表的系數進行檢定過程中,通常應考慮雷諾數一致時,真實測量過程中的差異性誤差。尤其在蒸汽的測量時,儀表量程的選型是參照在空氣介質下測量獲得的體積流量區(qū)間與蒸汽的密度乘積,推導出蒸汽的體積流量區(qū)間。這種算**引發(fā)差異性介質下雷諾數的區(qū)間差異。細致分析上表可得出,只要雷諾數在既定范圍內,檢定過程中并不會由于介質的不同造成較大的誤差,這個影響可不考慮。但雷諾數不可超出規(guī)定區(qū)間,否則會引發(fā) S r 的較大差異,造成誤差。
通過表3不難發(fā)現,要得出渦街流量計基于*低流量的限雷諾數,口徑一致情況下三類介質的*小流速應滿足1.0:4.0:15.0的大致比例。所以不可以將空氣介質下的體積流量區(qū)間等同于蒸汽介質下的數值。
3 蒸汽介質物理特性影響分析
1873年,荷蘭杰出物理學家范德瓦爾斯特實驗室中,發(fā)現了水蒸氣的物理性質,得出氣體分子間有著一定作用力,繼而推導出氣體的狀態(tài)方程以輔助理論驗證,這就是杰出的范德瓦爾斯特氣體狀態(tài)方程 [5] 。進一步研究發(fā)現,水蒸汽的分子的體積和相互的作用力比較大,無法以理想的氣體狀態(tài)方程加以表征。參照范德瓦爾斯特公式(5)的計算過程:
式中:
p 為壓強;
V 為1摩爾氣體的體積;
R 為普適氣體常數;
a 為度量分子間引力的參數;
b 為1摩爾分子本身包含的體積之和。
以上公式(5)中因子 a 和 b 的值因氣體的性質不同而存在差異,一般地,氣體的分子間引力參數 a 與 b 分子體積 表述如表3所示。
范德瓦爾斯特提出,氣體分子間的吸引力與間距存在負相關性,也就是密度的概念。把此理論使用在渦街流量計的測量過程中,通過表中的數據不難發(fā)現,水蒸汽分子間的吸引力a的數值較大,相當于氧氣與氮氣的4倍多。所以,在測量實際氣體時,基于同等壓力條件,水的分子間的吸引力的數值較蒸汽與空氣大得多,而蒸汽又顯著大于空氣。用渦街流量計進行測量時,發(fā)生體兩側的位置因為流速加大,引起靜壓力減小,體積擴張,流體密度隨之減小,而水介質由于分子間作用力大,并無明顯膨脹情況。蒸汽的分子間的吸引力比空氣大,所以前者膨脹性更低,密度變化也更小。參考流量的連續(xù)性方程得出,因為空氣密度變化更大,所以它的發(fā)生體兩側的流量變化較蒸汽介質更大,所以它的儀表系數比蒸汽介質變化更顯著。而氣體的可壓縮性與等嫡指數是其內在機理,這和我們的理論研究結果相互印證。