FluorPen手持式葉綠素熒光儀
FluorPen FP110手持式葉綠素熒光儀用于實驗室、溫室和野外快速測量植物葉綠素熒光參數(shù),具有便攜性強、精確度高、性價比高等特點;雙鍵操作,具圖形顯示屏,內置鋰電和數(shù)據存儲,廣泛應用于研究植物的光合作用、脅迫監(jiān)測、除草劑檢測或突變體篩選,還可用于生態(tài)毒理的生物檢測,如通過不同植物對土壤或水質污染的葉綠素熒光響應,找出敏感植物作為生物傳感器用于生物檢測。FP110配備多種葉夾型號,用于不同的樣品與研究。
應用領域
適用于光合作用研究和教學,植物及分子生物學研究,農業(yè)、林業(yè),生物技術領域等。研究內容涉及光合活性、脅迫響應、農藥藥效測試、突變篩選等。
·植物光合特性研究
·光合突變體篩選與表型研究
·生物和非生物脅迫的檢測
·植物抗脅迫能力或者易感性研究
·農業(yè)和林業(yè)育種、病害檢測、長勢與產量評估
·除草劑檢測
教學
功能特點:
§結構緊湊、便攜性強,LED光源、檢測器、控制單元集成于僅手機大小的儀器內,重量僅188g
§功能強大,是葉綠素熒光技術的結晶產品,具備了大型熒光儀的所有功能,可以測量所有葉綠素熒光參數(shù)
§內置了所有通用葉綠素熒光分析實驗程序,包括3套熒光淬滅分析程序、3套光響應曲線程序、OJIP快速熒光動力學曲線等
§高時間分辨率,可達10萬次每秒,自動繪出OJIP曲線并給出26個OJIP–test參數(shù)
§FluorPen專業(yè)軟件功能強大,可下載、展示葉綠素熒光參數(shù)圖表,也可以通過軟件直接控制儀器進行測量
§具備無人值守自動監(jiān)測功能
§內置藍牙與USB雙通訊模塊,GPS模塊,輸出帶時間戳和地理位置的葉綠素熒光參數(shù)圖表
§配備多種葉夾型號:固定葉夾式(適于實驗室內暗適應或夜間快速測量)、分離葉夾式(適用于野外暗適應測量)、探頭式(透明光纖探頭,用于非接觸性測量監(jiān)測或光適應條件下的葉綠素熒光監(jiān)測)、用戶定制式等
§可選配野外自動監(jiān)測式熒光儀,防水防塵設計
測量程序與功能
·Ft:瞬時葉綠素熒光,暗適應完成后Ft=F0
·QY:量子產額,表示光系統(tǒng)II 的效率,等于Fv/Fm(暗適應狀態(tài))或ΦPSII (光適應狀態(tài))。
·OJIP:快速熒光動力學曲線,用于研究植物暗適應后的快速熒光動態(tài)變化
·NPQ:熒光淬滅動力學曲線,用于研究植物從暗適應到光適應狀態(tài)的熒光淬滅變化過程。
·LC:光響應曲線,用于研究植物對不同光強的熒光淬滅反應。
·PAR:光合有效輻射,測量環(huán)境中植物生長可以利用的400-700nm實際光強(限PAR型號)。
技術參數(shù)
測量參數(shù)包括F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、Qp、Rfd、PAR(限PAR型號)、Area、Mo、Sm、PI、ABS/RC等50多個葉綠素熒光參數(shù),及3種給光程序的光響應曲線、3種熒光淬滅曲線、OJIP曲線等
OJIP–test時間分辨率為10µs(每秒10萬次),給出OJIP曲線和26個參數(shù),包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、Mo、Area、Fix Area、Sm、Ss、N、Phi_Po、Psi_o、Phi_Eo、Phi–Do、Phi_Pav、PI_Abs、ABS/RC、TRo/RC、ETo/RC、DIo/RC等
測量程序:Ft、QY、OJIP、NPQ1、NPQ2、NPQ3、LC1、LC2、LC3、PAR(限PAR型號)、Multi無人值守自動監(jiān)測
葉夾類型:FP110/S固定葉夾式、FP110/D分離葉夾式、FP110/P探頭式、FP110/X用戶定制式
PAR傳感器(限PAR型號):80o入射角余弦校正,讀數(shù)單位µmol(photons)/m2.s,可顯示讀數(shù),檢測范圍400-700 nm
測量光:每測量脈沖0.09µmol(photons)/m2.s,10-*可調
光化學光:10-1000µmol(photons)/m2.s可調
飽和光:3000µmol(photons)/m2.s,11-*可調
光源:標準配置藍光455nm,可根據需求配備不同波長的LED光源
檢測器:PIN光電二極管,667–750nm濾波器
尺寸大?。撼銛y,手機大小,134×65×33mm(不包括探頭),重量僅188g
數(shù)據存儲:容量16Mb,可存儲149000數(shù)據點
顯示與操作:圖形化顯示,雙鍵操作,待機5分鐘自動關閉
供電:2000mA可充電鋰電池,USB充電,可連續(xù)工作48小時,低電報警
工作條件:0–55℃,0–95%相對濕度(無凝結水)
存貯條件:-10–60℃,0–95%相對濕度(無凝結水)
通訊方式:藍牙+USB雙通訊模式,藍牙在20m距離*傳輸速度3Mbps
GPS模塊:內置,精度1.5m
軟件:FluorPen1.1軟件,用于數(shù)據下載、分析和圖表顯示,輸出Excel數(shù)據文件及熒光動力學曲線圖,適用于Windows 7及更高操作系統(tǒng)
操作軟件與實驗結果
產地:捷克
應用案例:
2017年4月,美國國家航空*(NASA)新一代*植物培養(yǎng)器(Advanced Plant Habitat,APH)搭載聯(lián)盟號MS-04貨運飛船抵達空間站。宇航員使用FluorPen手持儀葉綠素熒光儀在其中開展植物生理學及太空食物種植(growth of fresh food in space)的研究。
參考文獻
1. Singh, S., Mohan Prasad, S. & Pratap Singh, V. Additional calcium and sulfur manages hexavalent chromium toxicity in Solanum lycopersicum L. and Solanum melongena L. seedlings by involving nitric oxide. Journal of Hazardous Materials 398, 122607 (2020).
2. Ariyarathna, R. a. I. S., Weerasena, S. L. & Beneragama, C. K. Application of Polyphasic OJIP Chlorophyll Fluorescent Transient Analysis as an Indicator for Testing of Seedling Vigour of Common Bean (Phaseolus vulgaris L.). Tropical Agricultural Research 31, 106–115 (2020).
3. Prity, S. A. et al. Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status. Protoplasma (2020) doi:10.1007/s00709-020-01517-w.
4. Rahman, M. A. et al. Arbuscular Mycorrhizal Symbiosis Mitigates Iron (Fe)-Deficiency Retardation in Alfalfa (Medicago sativa L.) Through the Enhancement of Fe Accumulation and Sulfur-Assisted Antioxidant Defense. International Journal of Molecular Sciences 21, 2219 (2020).
5. Vitorino, L. C. et al. Biocontrol Potential of Sclerotinia sclerotiorum and Physiological Changes in Soybean in Response to Butia archeri Palm Rhizobacteria. Plants 9, 64 (2020).
6. Aalifar, M. et al. Blue Light Improves Vase Life of Carnation Cut Flowers Through Its Effect on the Antioxidant Defense System. Front. Plant Sci. 11, 511 (2020).
7. Muthusamy, M., Yoon, E. K., Kim, J. A., Jeong, M.-J. & Lee, S. I. Brassica Rapa SR45a Regulates Drought Tolerance via the Alternative Splicing of Target Genes. Genes 11, 182 (2020).
8. Muthusamy, M., Kim, J. Y., Yoon, E. K., Kim, J. A. & Lee, S. I. BrEXLB1, a Brassica rapa Expansin-Like B1 Gene Is Associated with Root Development, Drought Stress Response, and Seed Germination. Genes 11, 404 (2020).
9. Herritt, M. T. & Fritschi, F. B. Characterization of Photosynthetic Phenotypes and Chloroplast Ultrastructural Changes of Soybean (Glycine max) in Response to Elevated Air Temperatures. Front. Plant Sci. 11, (2020).
10.Kasampalis, D. S., Tsouvaltzis, P. & Siomos, A. S. Chlorophyll fluorescence, non-photochemical quenching and light harvesting complex as alternatives to color measurement, in classifying tomato fruit according to their maturity stage at harvest and in monitoring postharvest ripening during storage. Postharvest Biology and Technology 161, 111036 (2020).
11.Soares, J. S., Santiago, E. F. & Sorgato, J. C. Conservation of Schomburgkia crispa Lindl. (Orchidaceae) by reintroduction into a fragment of the Brazilian Cerrado. Journal for Nature Conservation 53, 125754 (2020).
12.Poblete, T. et al. Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis. ISPRS Journal of Photogrammetry and Remote Sensing 162, 27–40 (2020).
13.Chiluwal, A. et al. Deterioration of ovary plays a key role in heat stress-induced spikelet sterility in sorghum. Plant, Cell & Environment 43, 448–462 (2020).
14.Maai, E., Nishimura, K., Takisawa, R. & Nakazaki, T. Diurnal changes in chloroplast positioning and photosynthetic traits of C4 grass finger millet. Plant Production Science 0, 1–13 (2020).
15.De Micco, V. et al. Dust accumulation due to anthropogenic impact induces anatomical and photochemical changes in leaves of Centranthus ruber growing on the slope of the Vesuvius volcano. Plant Biol J 22, 93–102 (2020).
附:OJIP參數(shù)及計算公式
Bckg = background
Fo: = F50µs; fluorescence intensity at 50 µs
Fj: = fluorescence intensity at j-step (at 2 ms)
Fi: = fluorescence intensity at i-step (at 60 ms)
Fm: = maximal fluorescence intensity
Fv: = Fm - Fo (maximal variable fluorescence)
Vj = (Fj - Fo) / (Fm - Fo)
Fm / Fo = Fm / Fo
Fv / Fo = Fv / Fo
Fv / Fm = Fv / Fm
Mo = TRo / RC - ETo / RC
Area = area between fluorescence curve and Fm
Sm = area / Fm - Fo (multiple turn-over)
Ss = the smallest Sm turn-over (single turn-over)
N = Sm . Mo . (I / Vj) turn-over number QA
Phi_Po = (I - Fo) / Fm (or Fv / Fm)
Phi_o = I - Vj
Phi_Eo = (I - Fo / Fm) . Phi_o
Phi_Do = 1 - Phi_Po - (Fo / Fm)
Phi_Pav = Phi_Po - (Sm / tFM); tFM = time to reach Fm (in ms)
ABS / RC = Mo . (I / Vj) . (I / Phi_Po)
TRo / RC = Mo . (I / Vj)
ETo / RC = Mo . (I / Vj) . Phi_o)
DIo / RC = (ABS / RC) - (TRo / RC)