一:試驗原理
HDLF超低頻高壓發(fā)生器交流耐壓測試儀實際上是工頻耐壓試驗和串聯(lián)諧振耐壓試驗的一種替代方法。我們知道,在對大型發(fā)電機、電纜等試品進行工頻耐壓試驗和串聯(lián)諧振交流耐壓時,由于它們的絕緣層呈現(xiàn)較大的電容量,所以需要很大容量的試驗變壓器或諧振變壓器。這樣一些巨大的設備,不但笨重,造價高,而且使用十分不便。為了解決這一矛盾,電力部門采用了降低試驗頻率,從而降低了試驗電源的容量。從國內外多年的理論和實踐證明,用0.1Hz超低頻耐壓試驗替代工頻耐壓試驗,不但能有同樣的等效性,而且設備的體積大為縮小,重量大為減輕 ,理論上容量約為工頻的五百分之一,且操作簡單,與工頻試驗相比*性更多。這就是為什么發(fā)達國家普遍采用這一方法的原因。國家發(fā)改委已制定了《35kV及以下交聯(lián)聚乙烯絕緣電力電纜超低頻(0.1Hz)耐壓試驗方法》行業(yè)標準。我國正在推廣這一方法,本儀器是根據我國這一需要研制而成的。可廣泛用于電纜、大型高壓旋轉電機的交流耐壓試驗之中。
二:產品簡介
HDLF超低頻交流耐壓測試儀接合了現(xiàn)代數(shù)字變頻先進技術,采用微機控制,升壓、降壓、測量、保護*自動化。由于全電子化,所以體積小重量輕、大屏幕液晶顯示,清晰直觀、且能顯示輸出波形、打印試驗報告。設計指標*符合《電力設備測試儀器通用技術條件,第4部分:超低頻高壓發(fā)生器通用技術條件》電力行業(yè)標準,使用十分方便?,F(xiàn)在國內外均采用機械式的辦法進行調制和解調產生超低頻信號,所以存在正弦波波形不標準,測量誤差大,高壓部分有火花放電,設備笨重,而且正弦波的二,四象限還需要大功率高壓電阻進行放電整形,所以設備的整體功耗較大。本產品均能克服這樣一些不足之處,另外,還有如下特點需要特別說明:
1.電流、電壓、波形數(shù)據均直接從高壓側采樣獲得,所以數(shù)據準確。
2.具有過壓保護功能,當輸出超過所設定的限壓值時,儀器將停機保護,動作時間小于20ms。
3.具有過流保護功能:設計為高低壓雙重保護,高壓側可按設定值進行精確停機保護;低壓側的電流超過額定電流時將進行停機保護,動作時間都小于20ms。
4.高壓輸出保護電阻設計在升壓體內,所以外面不需另接保護電阻。
5.由于采用了高低壓閉環(huán)負反饋控制電路,所以輸出無容升效應。
三:技術參數(shù)
1.輸出額定電壓:可按參數(shù)定制。
2.輸出頻率:0.1Hz、0.05Hz、0.02Hz
3.帶載能力: 0.1Hz ≤1.1µF
0.05Hz ≤2.2µF
0.02Hz ≤5.5µF
4.測量精度:3%
5.電壓正,負峰值誤差:≤3%
6.電壓波形失真度:≤5%
7.使用條件:戶內、戶外;溫度:-10℃~+40℃;濕度:≤85%RH
8.電源保險管:參見表1
9.市電源:頻率50Hz,電壓220V±5%。若使用便攜式發(fā)電機供電,發(fā)電機要求:頻率50Hz,電壓220V±5%,功率應大于3KW,并且在發(fā)電機的輸出端并聯(lián)一只功率不小于800W的阻性負載(如電爐),以便穩(wěn)定發(fā)電機的運轉速度。否則儀器將不能正常工作。
型 號 | 峰值電壓 | 測量范圍 | 重 量 | 用 途 |
HDLF-30/1.1
|
| 1. 0.1Hz時≤1.1μF 2. 0.05Hz時≤2.2μF | |
|
|
| 1. 0.1Hz時≤1.1μF 2. 0.05Hz時≤2.2μF |
|
|
|
| 1. 0.1Hz時≤1.1μF 2. 0.05Hz時≤2.2μF 3. 0.02Hz時≤5.5μF |
|
|
|
| 1. 0.1Hz時≤1.1μF 2. 0.05Hz時≤2.2μF 3. 0.02Hz時≤5.5μF |
|
|
|
| 1. 0.1Hz時≤1.1μF 2. 0.05Hz時≤2.2μF 3. 0.02Hz時≤5.5μF | |
|
更多產品咨詢請訪問武漢華頂電力設備有限公司
對某110kV電纜線路進行時發(fā)現(xiàn)其變電站內部分存在局部放電信號,精確定位結果顯示局部放電缺陷位于該電纜線路B相GIS終端電纜倉內。隨后,對B相電纜倉進行開倉檢查并更換電纜終端,更換后異常信號消失。對更換下來的GIS終端進行X光檢測和解體發(fā)現(xiàn)在環(huán)氧套管地電位金屬內襯件端部存在3.9mm不規(guī)則氣腔,驗證了局部放電檢測的有效性。
(二)檢測分析方法
采用高頻局部放電檢測儀器對上述110kV電纜終端接地箱進行檢測,檢測圖譜如圖5-11所示。由檢測圖譜可知,在三相電纜接地箱處均能檢測到明顯的局部放電信號,其中,B相幅值大,達到200mV左右;A、C相幅值較小均在80mV左右。且在同一同步信號下,A、C相放電信號與B相信號極性相反,表明局部放電信號穿過B相傳感器的方向與穿過其他兩相傳感器的方向相反,即局部放電信號沿著B相電纜終端接地線傳播,再經同一接地排傳播至其他兩相的接地線,因此確定局部放電源位于B相GIS電纜終端。同時,采用特高頻傳感器和高速示波器對上述局部放電源位置進行了確認。
許昌市超低頻高壓發(fā)生器交流耐壓測試儀選型
(a)A相檢測圖譜(b)B相檢測圖譜(c)C相檢測圖譜
圖5-11 110kV電纜終端接地箱處高頻局部放電檢測圖譜
采用GE數(shù)字化放射攝影系統(tǒng)(CT)對該環(huán)氧套管進行X光掃描,掃描結果如圖5-12所示,由圖可見,在該GIS終端套管底部內襯件端部存在3.9mm不規(guī)則氣隙,解體切割后的氣隙如圖5-13所示。
圖5-12環(huán)氧套管CT掃描重建橫向與縱向斷面圖
許昌市超低頻高壓發(fā)生器交流耐壓測試儀選型
圖5-13解體切割后的氣隙
(三)經驗體會
(1)該案例表明高頻局部放電檢測不僅能發(fā)現(xiàn)電纜中間接頭的局部放電缺陷,通過在電纜終端接地箱處進行檢測,還能有效發(fā)現(xiàn)電纜終端甚至GIS倉體內部的局部放電缺陷。
(2)通過對三相高頻檢測圖譜中時域脈沖的極性和幅值分析,可以很容易的辨別出缺陷的相別。
(3)對缺陷設備進行的X光檢測和解體分析驗證了高頻帶電檢測的有效性,對于該項技術的推廣應用具有重要意